A platform for research: civil engineering, architecture and urbanism
Vanadium Redox Flow Battery Storage System Linked to the Electric Grid
This paper focuses on technology state of the art for the charge/discharge of electric energy storage supported by vanadium redox flow battery linked to the electric grid. Properties of vanadium, the main configuration and the reaction of charge/discharge of a vanadium redox flow battery are addressed. The vanadium redox flow battery has the highest cell voltage among the other redox flow battery, implying higher power and energy density which favours application at power plants. This electric energy storage is viewed as a promising contribution to be integrated in power system due to a reasonably bulky size and to successful applications currently allowing storage of energy at power plants or at electrical grids. For instances, allowing storage of energy as an economic improvement providing spin reserve to avoid penalty for imbalances between the energy delivered and energy contracted at closing of electricity market or as an economic improvement to diminish the cost of electricity usage of a consumer. The vanadium redox flow battery has the advantages of scalability customized to meet requirements for power and energy capacity and of excellent combination of energy efficiency, capital cost and life cycle costs compared with other technology.
Vanadium Redox Flow Battery Storage System Linked to the Electric Grid
This paper focuses on technology state of the art for the charge/discharge of electric energy storage supported by vanadium redox flow battery linked to the electric grid. Properties of vanadium, the main configuration and the reaction of charge/discharge of a vanadium redox flow battery are addressed. The vanadium redox flow battery has the highest cell voltage among the other redox flow battery, implying higher power and energy density which favours application at power plants. This electric energy storage is viewed as a promising contribution to be integrated in power system due to a reasonably bulky size and to successful applications currently allowing storage of energy at power plants or at electrical grids. For instances, allowing storage of energy as an economic improvement providing spin reserve to avoid penalty for imbalances between the energy delivered and energy contracted at closing of electricity market or as an economic improvement to diminish the cost of electricity usage of a consumer. The vanadium redox flow battery has the advantages of scalability customized to meet requirements for power and energy capacity and of excellent combination of energy efficiency, capital cost and life cycle costs compared with other technology.
Vanadium Redox Flow Battery Storage System Linked to the Electric Grid
Arribas, B.N. (author) / Melício, Rui (author) / Teixeira, Jorge Ginja (author) / Mendes, V.M.F. (author) / Donsión, Manuel Pérez
2016-05-01
305
Article (Journal)
Electronic Resource
English
DDC:
690
British Library Online Contents | 2018
|A Novel Biomimetic Lung-Shaped Flow Field for All-Vanadium Redox Flow Battery
DOAJ | 2023
|