A platform for research: civil engineering, architecture and urbanism
An investigation of the indoor environmental quality of a sustainable building at UBC
Aspects of the indoor environment that directly influence the occupants are ventilation, indoor-air quality (IAQ), acoustic and thermal condi¬tions, as well as lighting. All five aspects were studied to investigate the indoor environmental quality (IEQ) in a sustainable building (CIRS) at the University of British Columbia, Vancouver campus. Physical measurements were made in several selected spaces (mainly offices and meeting rooms) to monitor indoor parameters such as background noise level, reverberation time, VOC and CO₂ concentrations, ambient temperature, relative humidity, indoor illuminance level, etc. Building performance was analyzed by comparing the measurement results to standard criteria, and to the design goals of CIRS. Several selected spaces in CIRS were found unsatisfactory in some aspects of IEQ – e.g. the mechanical ventilation system was unable to remove 80% of outdoor ultrafine particles; more than 20% of the measured spaces exceeded the maximum recommended background noise level; 100% of the noise isolations between offices and their surroundings were inadequate; speech privacy between adjacent private offices was poor; rooms in the South wing suffered from very high illuminance levels, etc. Building features and management details that influenced IEQ were discussed to analyze the relationships between building design/operation and performance. Several room features were discussed, such as air change rate, furnishing material, ventilation types, acoustical characteristics, etc. Several conclusions were drawn – e.g. ventilation conditions of rooms were highly affected by the door/windows statuses; rooms with the lowest air change rates had the highest UFP concentrations; crowd noises in the atrium caused high background noise levels; inadequate noise isolations were caused by indoor light-weight partitions, etc.
An investigation of the indoor environmental quality of a sustainable building at UBC
Aspects of the indoor environment that directly influence the occupants are ventilation, indoor-air quality (IAQ), acoustic and thermal condi¬tions, as well as lighting. All five aspects were studied to investigate the indoor environmental quality (IEQ) in a sustainable building (CIRS) at the University of British Columbia, Vancouver campus. Physical measurements were made in several selected spaces (mainly offices and meeting rooms) to monitor indoor parameters such as background noise level, reverberation time, VOC and CO₂ concentrations, ambient temperature, relative humidity, indoor illuminance level, etc. Building performance was analyzed by comparing the measurement results to standard criteria, and to the design goals of CIRS. Several selected spaces in CIRS were found unsatisfactory in some aspects of IEQ – e.g. the mechanical ventilation system was unable to remove 80% of outdoor ultrafine particles; more than 20% of the measured spaces exceeded the maximum recommended background noise level; 100% of the noise isolations between offices and their surroundings were inadequate; speech privacy between adjacent private offices was poor; rooms in the South wing suffered from very high illuminance levels, etc. Building features and management details that influenced IEQ were discussed to analyze the relationships between building design/operation and performance. Several room features were discussed, such as air change rate, furnishing material, ventilation types, acoustical characteristics, etc. Several conclusions were drawn – e.g. ventilation conditions of rooms were highly affected by the door/windows statuses; rooms with the lowest air change rates had the highest UFP concentrations; crowd noises in the atrium caused high background noise levels; inadequate noise isolations were caused by indoor light-weight partitions, etc.
An investigation of the indoor environmental quality of a sustainable building at UBC
Lei, Yizhong (author)
2014-04-17
Theses
Electronic Resource
English
DDC:
690
An investigation of the indoor environmental quality of a sustainable building at UBC
BASE | 2014
|