A platform for research: civil engineering, architecture and urbanism
Retrofit of Seismically Deficient RC Columns with Textile- Reinforced Mortar (TRM) Jackets
The effectiveness of a new structural material, namely textilereinforced mortar (TRM), was investigated experimentally in this study as a means of confining old-type reinforced concrete columns with limited capacity due to bar buckling or due to bond failure at lap splice regions. Comparisons with equal stiffness and strength fiber-reinforced polymer (FRP) jackets allow for the evaluation of the effectiveness of TRM versus FRP. Tests were carried out on full scale non-seismically detailed RC columns subjected to cyclic uniaxial flexure under constant axial load. Thirteen cantilever-type specimens with either continuous longitudinal reinforcement (smooth or deformed) or lap splicing of longitudinal bars at the floor level were constructed and tested. Experimental results indicated that TRM jacketing is quite effective as a means of increasing the cyclic deformation capacity of old-type RC columns with poor detailing, by delaying bar buckling and by preventing splitting bond failures in columns with lap spliced bars. Compared with their FRP counterparts, TRM jackets used in this study were found to be equally effective in terms of increasing both the strength and deformation capacity of the retrofitted columns. From the response of specimens tested in this study, it can be concluded that TRM jacketing is an extremely promising solution for the confinement of reinforced concrete columns, including poorly detailed ones with or without lap splices in seismic regions.
Retrofit of Seismically Deficient RC Columns with Textile- Reinforced Mortar (TRM) Jackets
The effectiveness of a new structural material, namely textilereinforced mortar (TRM), was investigated experimentally in this study as a means of confining old-type reinforced concrete columns with limited capacity due to bar buckling or due to bond failure at lap splice regions. Comparisons with equal stiffness and strength fiber-reinforced polymer (FRP) jackets allow for the evaluation of the effectiveness of TRM versus FRP. Tests were carried out on full scale non-seismically detailed RC columns subjected to cyclic uniaxial flexure under constant axial load. Thirteen cantilever-type specimens with either continuous longitudinal reinforcement (smooth or deformed) or lap splicing of longitudinal bars at the floor level were constructed and tested. Experimental results indicated that TRM jacketing is quite effective as a means of increasing the cyclic deformation capacity of old-type RC columns with poor detailing, by delaying bar buckling and by preventing splitting bond failures in columns with lap spliced bars. Compared with their FRP counterparts, TRM jackets used in this study were found to be equally effective in terms of increasing both the strength and deformation capacity of the retrofitted columns. From the response of specimens tested in this study, it can be concluded that TRM jacketing is an extremely promising solution for the confinement of reinforced concrete columns, including poorly detailed ones with or without lap splices in seismic regions.
Retrofit of Seismically Deficient RC Columns with Textile- Reinforced Mortar (TRM) Jackets
Bournas, Dionysios A. (author) / Triantafillou, Thanasis C. (author) / Papanicolaou, Catherine G. (author)
2009-06-03
Textilbeton – Theorie und Praxis : Tagungsband zum 4. Kolloquium zu Textilbewehrten Tragwerken (CTRS4) und zur 1. Anwendertagung, Dresden, 3.6. - 5.6.2009. - Dresden, 2009. - S. 471 - 490
Article (Journal)
Electronic Resource
English
Confinement of masonry columns with textile-reinforced mortar jackets
Elsevier | 2020
|Seismic performance of reinforced concrete columns retrofitted by textile-reinforced mortar jackets
Taylor & Francis Verlag | 2020
|Concrete Confinement with Textile-Reinforced Mortar Jackets
Online Contents | 2006
|Retrofit of Reinforced Concrete Columns Using Partially Stiffened Steel Jackets
British Library Online Contents | 2003
|