A platform for research: civil engineering, architecture and urbanism
Flexural Behavior of Lightweight Composite Ferrocement Plates
In recent years, producing lightweight structures is considered as one of the most important application of concrete. It has extensive applications in the architect and insulation work. The main objective of this study is to investigate the behavior and the performance of lightweight ferrocement (LWF) composite plates with lightweight materials as filler materials in flexural. Fifteen lightweight ferrocement (LWF) composite plates were investigated by conducting flexural tests. The main variables are (the thickness of plates, the type of filler materials, the type and number of layers of meshes). The behavior of lightweight ferrocement (LWF) composite plates is investigated by conducting flexural tests on fifteen simply supported rectangular plates under three lines loadings. Fifteen plates represented in twelve lightweight ferrocement (LWF) plates and three conventional reinforced concrete (RC) plates. The ferrocement plates were divided into three groups according to the thickness of plates 6cm, 8cm and 10cm. The structural performances of the LWF and RC plates are investigated in terms of crack load, load-deflection curves, stiffness, energy absorption capacity, ductility index, ultimate flexural load-to-weight ratio, load-strain curves, crack patterns, and the failure modes. The test results revealed remarkable enhancement in the flexural behavior and potential application of lightweight ferrocement (LWF) composite plates to produce lightweight structural elements as compared to that of the reinforced concrete (RC) plates, which lead towards the industrialization of building system and meets with innovation and expansible application of concrete construction technology results in better efficiency of developing of lightweight composite ferrocement plates.
Flexural Behavior of Lightweight Composite Ferrocement Plates
In recent years, producing lightweight structures is considered as one of the most important application of concrete. It has extensive applications in the architect and insulation work. The main objective of this study is to investigate the behavior and the performance of lightweight ferrocement (LWF) composite plates with lightweight materials as filler materials in flexural. Fifteen lightweight ferrocement (LWF) composite plates were investigated by conducting flexural tests. The main variables are (the thickness of plates, the type of filler materials, the type and number of layers of meshes). The behavior of lightweight ferrocement (LWF) composite plates is investigated by conducting flexural tests on fifteen simply supported rectangular plates under three lines loadings. Fifteen plates represented in twelve lightweight ferrocement (LWF) plates and three conventional reinforced concrete (RC) plates. The ferrocement plates were divided into three groups according to the thickness of plates 6cm, 8cm and 10cm. The structural performances of the LWF and RC plates are investigated in terms of crack load, load-deflection curves, stiffness, energy absorption capacity, ductility index, ultimate flexural load-to-weight ratio, load-strain curves, crack patterns, and the failure modes. The test results revealed remarkable enhancement in the flexural behavior and potential application of lightweight ferrocement (LWF) composite plates to produce lightweight structural elements as compared to that of the reinforced concrete (RC) plates, which lead towards the industrialization of building system and meets with innovation and expansible application of concrete construction technology results in better efficiency of developing of lightweight composite ferrocement plates.
Flexural Behavior of Lightweight Composite Ferrocement Plates
Shaheen, Yousry B. I. (author) / Soliman, Noha Mohamed (author) / Kotb, Heba A. A. (author)
2017-01-15
Challenge Journal of Concrete Research Letters; Vol 6, No 2 (2015) ; 2548-0928
Article (Journal)
Electronic Resource
English
DDC:
690
Flexural Behavior of Ferrocement Plates Incorporating Steel and PET Fibers
British Library Online Contents | 2016
|Behavior of Weldmesh Ferrocement Composite Under Flexural Cyclic Loads
British Library Online Contents | 1992
|Flexural Behavior of Composite Beam with Ferrocement Permanent Formwork
British Library Online Contents | 1997
|Flexural behavior of ferrocement sandwich panels
Elsevier | 1991
|