A platform for research: civil engineering, architecture and urbanism
Improving simulation training in orthopaedics
The way surgical trainees acquire technical skills is changing in modern surgical training programmes: simulation is proposed as a key part of those changes. Arthroscopy is a surgical technique that is increasing in both incidence and technical complexity; where simulation is becoming common, but evidence is limited. Real-world performance improvements can be measured following simulation training in other fields, but equivalent measures of intra-operative performance are inadequate. Thus, although surgical simulation is popular and improves simulated performance, there is little objective evidence that it improves intra-operative performance. The original contribution of this thesis is to objectively demonstrate the transfer of simulation training into improved intra-operative technical skills. To achieve this, a systematic literature review investigated the quantitative metrics currently used to measure arthroscopic performance, identifying wireless motion analysis as a potential method to assess performance intra-operatively. Motion analysis is a recognised objective method to measure surgical activity which correlates with surgical experience, so wireless motion analysis was validated against a wired motion analysis method commonly used in simulation but not feasible for intra-operative use. Wireless motion analysis metrics were further validated with a simulated arthroscopy list: this environment allowed deliberate practice of arthroscopic sub-skills with proximate feedback for independent practice. This simulated arthroscopy list with wireless motion analysis was used in two randomised studies: the penultimate study of this thesis investigated the impact of simulated practice on the arthroscopic learning curve and showed that performance improved rapidly with independent practice but was not modified by feedback, while the final study investigated additional simulation practice during early surgical training, and objectively demonstrated that additional simulation training improved intra-operative ...
Improving simulation training in orthopaedics
The way surgical trainees acquire technical skills is changing in modern surgical training programmes: simulation is proposed as a key part of those changes. Arthroscopy is a surgical technique that is increasing in both incidence and technical complexity; where simulation is becoming common, but evidence is limited. Real-world performance improvements can be measured following simulation training in other fields, but equivalent measures of intra-operative performance are inadequate. Thus, although surgical simulation is popular and improves simulated performance, there is little objective evidence that it improves intra-operative performance. The original contribution of this thesis is to objectively demonstrate the transfer of simulation training into improved intra-operative technical skills. To achieve this, a systematic literature review investigated the quantitative metrics currently used to measure arthroscopic performance, identifying wireless motion analysis as a potential method to assess performance intra-operatively. Motion analysis is a recognised objective method to measure surgical activity which correlates with surgical experience, so wireless motion analysis was validated against a wired motion analysis method commonly used in simulation but not feasible for intra-operative use. Wireless motion analysis metrics were further validated with a simulated arthroscopy list: this environment allowed deliberate practice of arthroscopic sub-skills with proximate feedback for independent practice. This simulated arthroscopy list with wireless motion analysis was used in two randomised studies: the penultimate study of this thesis investigated the impact of simulated practice on the arthroscopic learning curve and showed that performance improved rapidly with independent practice but was not modified by feedback, while the final study investigated additional simulation practice during early surgical training, and objectively demonstrated that additional simulation training improved intra-operative ...
Improving simulation training in orthopaedics
Garfjeld-Roberts, P (author) / Rees, J / Alvand, A
2018-10-23
Theses
Electronic Resource
English
DDC:
690
The acoustic emission technique in orthopaedics - a review
British Library Online Contents | 2005
|Biodegradable PLA-PGA Polymers for Tissue Engineering in Orthopaedics
British Library Online Contents | 1997
|Mechanical properties of nickel–titanium foams for reconstructive orthopaedics
British Library Online Contents | 2008
|Fibrous composite materials in dentistry and orthopaedics: review and applications
British Library Online Contents | 2004
|A New Role for Marine Skeletal Proteins in Regenerative Orthopaedics
British Library Online Contents | 2013
|