A platform for research: civil engineering, architecture and urbanism
Aluminium plates with pre-formed slits subjected to blast loading
The dynamic response of thin, perforated aluminium plates subjected to blast loading was studied both experimentally and numerically. Two different blast intensities were used and the plates were pre-cut with four horizontal and vertical slits prior to testing. The applied AA6016-T4 plates had an exposed area of 0.3 m x 0.3 m and a thickness of 1.5 mm. Special focus was placed on the dynamic response and failure characteristics of the plates. Uniaxial tensile tests were conducted in three different directions to determine the material behaviour and material parameters were found by inverse modelling using the optimization tool LSOPT. Finally, numerical simulations were performed in the finite element code Abaqus/Explicit where the plates were uniformly loaded with time-dependent pressure histories from similar tests on massive plates. The material behaviour was assumed to follow the J2 flow theory of plasticity and an uncoupled damage model was used in combination with element erosion to predict material failure. The numerical results were in good agreement with the experimental observations and predicted both the dynamic response and the complete tearing of the centre part of the plates. ; publishedVersion ; © The Authors, published by EDP Sciences, 2018. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Aluminium plates with pre-formed slits subjected to blast loading
The dynamic response of thin, perforated aluminium plates subjected to blast loading was studied both experimentally and numerically. Two different blast intensities were used and the plates were pre-cut with four horizontal and vertical slits prior to testing. The applied AA6016-T4 plates had an exposed area of 0.3 m x 0.3 m and a thickness of 1.5 mm. Special focus was placed on the dynamic response and failure characteristics of the plates. Uniaxial tensile tests were conducted in three different directions to determine the material behaviour and material parameters were found by inverse modelling using the optimization tool LSOPT. Finally, numerical simulations were performed in the finite element code Abaqus/Explicit where the plates were uniformly loaded with time-dependent pressure histories from similar tests on massive plates. The material behaviour was assumed to follow the J2 flow theory of plasticity and an uncoupled damage model was used in combination with element erosion to predict material failure. The numerical results were in good agreement with the experimental observations and predicted both the dynamic response and the complete tearing of the centre part of the plates. ; publishedVersion ; © The Authors, published by EDP Sciences, 2018. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Aluminium plates with pre-formed slits subjected to blast loading
Granum, Henrik (author) / Aune, Vegard (author) / Børvik, Tore (author) / Hopperstad, Odd Sture (author)
2018-01-01
Article/Chapter (Book)
Electronic Resource
English
DDC:
690
Response of stiffened and unstiffened plates subjected to blast loading
British Library Conference Proceedings | 1998
|Response of stiffened and unstiffened plates subjected to blast loading
Online Contents | 1998
|Plates subjected to blast loading conditions - modelling, simulation and experimental investigation
British Library Conference Proceedings | 2001
|The response of stiffened square plates subjected to localised blast loading
British Library Conference Proceedings | 2002
|