A platform for research: civil engineering, architecture and urbanism
Influence on structural reliability of uncertainty in estimated extreme values of load-effects
Extreme values of time-varying loads are often estimated to serve as design loads for the purposes of structural design. Uncertainty in the estimation of the design loads inevitably leads to uncertainty in the resultant levels of structural reliability. Uncertainty is assessed for estimates of extreme wind loads calculated using statistical methods based on the average conditional exceedance rate (ACER), fitting of a Gumbel distribution and Peaks-over-Threshold (POT). The ACER method gave the best results, but all the methods gave results which would normally be considered to be sufficiently accurate for engineering applications. However, for structures designed on the basis of the estimated values of V100, the uncertainty in the estimated design loads produced very uncertain probabilities of failure with a significant increase in their expected value. It is concluded that the uncertain distribution of the probabilities of failure must be taken into account when evaluating structural safety and a ‘fiducial confidence function’ is proposed for this purpose. ; Non UBC ; Unreviewed ; This collection contains the proceedings of ICASP12, the 12th International Conference on Applications of Statistics and Probability in Civil Engineering held in Vancouver, Canada on July 12-15, 2015. Abstracts were peer-reviewed and authors of accepted abstracts were invited to submit full papers. Also full papers were peer reviewed. The editor for this collection is Professor Terje Haukaas, Department of Civil Engineering, UBC Vancouver. ; Faculty
Influence on structural reliability of uncertainty in estimated extreme values of load-effects
Extreme values of time-varying loads are often estimated to serve as design loads for the purposes of structural design. Uncertainty in the estimation of the design loads inevitably leads to uncertainty in the resultant levels of structural reliability. Uncertainty is assessed for estimates of extreme wind loads calculated using statistical methods based on the average conditional exceedance rate (ACER), fitting of a Gumbel distribution and Peaks-over-Threshold (POT). The ACER method gave the best results, but all the methods gave results which would normally be considered to be sufficiently accurate for engineering applications. However, for structures designed on the basis of the estimated values of V100, the uncertainty in the estimated design loads produced very uncertain probabilities of failure with a significant increase in their expected value. It is concluded that the uncertain distribution of the probabilities of failure must be taken into account when evaluating structural safety and a ‘fiducial confidence function’ is proposed for this purpose. ; Non UBC ; Unreviewed ; This collection contains the proceedings of ICASP12, the 12th International Conference on Applications of Statistics and Probability in Civil Engineering held in Vancouver, Canada on July 12-15, 2015. Abstracts were peer-reviewed and authors of accepted abstracts were invited to submit full papers. Also full papers were peer reviewed. The editor for this collection is Professor Terje Haukaas, Department of Civil Engineering, UBC Vancouver. ; Faculty
Influence on structural reliability of uncertainty in estimated extreme values of load-effects
2015-07-01
Conference paper
Electronic Resource
English
DDC:
690
Reliability of Parameter Values Estimated Using Trajectory Observations
British Library Online Contents | 2009
|Extreme truck load effect prediction for bridge structural reliability
British Library Conference Proceedings | 2010
|The reliability of extreme surge levels, estimated from observational records over 100 years
British Library Conference Proceedings | 2003
|Load path uncertainty in a wood structure and the effect on structural reliability
Online Contents | 2013
|