A platform for research: civil engineering, architecture and urbanism
Structural behavior of shear connectors embedded in different types of concrete
Push-out tests are used to determine shear connectors’ properties where two small reinforced concrete walls are attached to the top and bottom flanges of an I-section through four shear studs located on both its flanges. In this study, the structural behavior of shear connectors was examined by testing a total of 36 push-out specimens. In these specimens, various test parameters were used. The types of shear connectors and their strengths, their connection types, and the strength of the concrete in which they were embedded were all investigated. Headed, L-shaped, and C-shaped studs were selected in this experimental study to represent different types of shear connectors. These shear connectors were assumed to be either ordinary or high strength steel-embedded in three different types of concrete: ordinary, high strength, and reactive powder concretes. In these tests, the shear connectors were connected through welding or epoxy bonding. The objective of this study was to investigate the structural behaviors of these different types of shear connectors by focusing on their shear force capacities and slip values. The test results indicate that the reactive powder concrete increased the mechanical properties of concrete as the concrete age increased. The specimens with C-shaped studs made of high-strength steel with welded studs embedded in normal weight, high strength and reactive powder concretes, generated the maximum shear resistance values.
Structural behavior of shear connectors embedded in different types of concrete
Push-out tests are used to determine shear connectors’ properties where two small reinforced concrete walls are attached to the top and bottom flanges of an I-section through four shear studs located on both its flanges. In this study, the structural behavior of shear connectors was examined by testing a total of 36 push-out specimens. In these specimens, various test parameters were used. The types of shear connectors and their strengths, their connection types, and the strength of the concrete in which they were embedded were all investigated. Headed, L-shaped, and C-shaped studs were selected in this experimental study to represent different types of shear connectors. These shear connectors were assumed to be either ordinary or high strength steel-embedded in three different types of concrete: ordinary, high strength, and reactive powder concretes. In these tests, the shear connectors were connected through welding or epoxy bonding. The objective of this study was to investigate the structural behaviors of these different types of shear connectors by focusing on their shear force capacities and slip values. The test results indicate that the reactive powder concrete increased the mechanical properties of concrete as the concrete age increased. The specimens with C-shaped studs made of high-strength steel with welded studs embedded in normal weight, high strength and reactive powder concretes, generated the maximum shear resistance values.
Structural behavior of shear connectors embedded in different types of concrete
Wardi, Adil Hadi (author) / Tunç, Gökhan (author) / Ibraheem, Khalil (author)
2020-12-20
doi:10.20528/cjsmec.2020.04.001
Challenge Journal of Structural Mechanics; Vol 6, No 4 (2020); 160-175 ; 2149-8024
Article (Journal)
Electronic Resource
English
DDC:
690
Shear behavior of large stud shear connectors embedded in ultra-high-performance concrete
SAGE Publications | 2020
|DOAJ | 2018
|Experimental study on behavior of shear connectors embedded in steel-reinforced concrete joints
TIBKAT | 2018
|