A platform for research: civil engineering, architecture and urbanism
Development of a 3D bioprinting software toolchain
In recent years, three-dimensional (3D) printers have revolutionized the process of prototyping and manufacturing inanimate objects. Extending this technology to tissue engineering as a means of creating customized in vitro tissue constructs that mimic in vivo conditions is a relatively new idea that has the potential to transform the way biological research is conducted. Biological tissues are inherently complex 3D heterogeneous structures. Many of these tissues are made up of building blocks that vary in composition and morphology. These building blocks are organized into different levels and locations which allow them to interact with one another in unique ways such that the overall tissue structure exhibits a specific biological function. Designing and then printing 3D biological structures composed of multiple cell-encapsulated building blocks, each programmed by composition and architecture and printed using different properties, is a challenge in tissue engineering. This thesis presents the development of a 3D bioprinting software toolchain for the design and printing of software-programmable tissues. The 3D bioprinting software toolchain is built around a novel bottom-up tissue engineering design method. The Tissue Building Block Design (TBBD) method seeks to enable the assembling of complex biological structures from a set of simpler building blocks, each coded with unique material compositions, printing properties, and architectures. Algorithms were developed to generate the layer-by-layer heterogeneous process plans required to 3D print tissue models designed using the TBBD method. We evaluate the performance of our implementation of the TBBD method by analyzing execution times and performing a comparison against a more standard design approach. We then analyze and discuss the effect of design choices and printing parameters on the overall printing process and the challenges associated with our microfluidics-based method of bioprinting. We also demonstrate the functionality and asses the capabilities of the 3D bioprinting software toolchain by printing several different heterogeneous hydrogel structures using our 3D bioprinter. ; Applied Science, Faculty of ; Electrical and Computer Engineering, Department of ; Graduate
Development of a 3D bioprinting software toolchain
In recent years, three-dimensional (3D) printers have revolutionized the process of prototyping and manufacturing inanimate objects. Extending this technology to tissue engineering as a means of creating customized in vitro tissue constructs that mimic in vivo conditions is a relatively new idea that has the potential to transform the way biological research is conducted. Biological tissues are inherently complex 3D heterogeneous structures. Many of these tissues are made up of building blocks that vary in composition and morphology. These building blocks are organized into different levels and locations which allow them to interact with one another in unique ways such that the overall tissue structure exhibits a specific biological function. Designing and then printing 3D biological structures composed of multiple cell-encapsulated building blocks, each programmed by composition and architecture and printed using different properties, is a challenge in tissue engineering. This thesis presents the development of a 3D bioprinting software toolchain for the design and printing of software-programmable tissues. The 3D bioprinting software toolchain is built around a novel bottom-up tissue engineering design method. The Tissue Building Block Design (TBBD) method seeks to enable the assembling of complex biological structures from a set of simpler building blocks, each coded with unique material compositions, printing properties, and architectures. Algorithms were developed to generate the layer-by-layer heterogeneous process plans required to 3D print tissue models designed using the TBBD method. We evaluate the performance of our implementation of the TBBD method by analyzing execution times and performing a comparison against a more standard design approach. We then analyze and discuss the effect of design choices and printing parameters on the overall printing process and the challenges associated with our microfluidics-based method of bioprinting. We also demonstrate the functionality and asses the capabilities of the 3D bioprinting software toolchain by printing several different heterogeneous hydrogel structures using our 3D bioprinter. ; Applied Science, Faculty of ; Electrical and Computer Engineering, Department of ; Graduate
Development of a 3D bioprinting software toolchain
Mohamed, Tamer Abdullah Gharieb (author)
2014-01-01
Theses
Electronic Resource
English
DDC:
720
Semantico – Toolchain for literature classification
DataCite | 2023
|A Toolchain for Synthesizing and Validating Safety Architectures
Springer Verlag | 2023
|A Toolchain Architecture for Condition Monitoring Using the Eclipse Arrowhead Framework
BASE | 2021
|An Automated Toolchain for Camera-Enabled Sensing of Drinking Water Chlorine Residual
American Chemical Society | 2022
|