A platform for research: civil engineering, architecture and urbanism
Procjena troškova izgradnje AB i prednapetih betonskih mostova primjenom strojnog učenja ; Construction cost estimation of reinforced and prestressed concrete bridges using machine learning
U ovom radu istraženo je sedam najnovijih postupaka strojnog učenja za procjenu troškova izgradnje armiranobetonskih i prednapetih betonskih mostova, uključujući umjetne neuronske mreže (ANN) i ansamble ANN, ansamble regresijskih stabala (eng. random forests, boosted and bagged regresijska stabla), metodu potpornih vektora za regresiju (SVR) i Gausov regresijski proces (GPR). Stvorena je i baza podataka o troškovima izgradnje i projektnim karakteristikama za 181 armiranobetonski i prednapeti betonski most za treniranje i ocjenu modela. ; Seven state-of-the-art machine learning techniques for estimation of construction costs of reinforced-concrete and prestressed concrete bridges are investigated in this paper, including artificial neural networks (ANN) and ensembles of ANNs, regression tree ensembles (random forests, boosted and bagged regression trees), support vector regression (SVR) method, and Gaussian process regression (GPR). A database of construction costs and design characteristics for 181 reinforced-concrete and prestressed-concrete bridges is created for model training and evaluation.
Procjena troškova izgradnje AB i prednapetih betonskih mostova primjenom strojnog učenja ; Construction cost estimation of reinforced and prestressed concrete bridges using machine learning
U ovom radu istraženo je sedam najnovijih postupaka strojnog učenja za procjenu troškova izgradnje armiranobetonskih i prednapetih betonskih mostova, uključujući umjetne neuronske mreže (ANN) i ansamble ANN, ansamble regresijskih stabala (eng. random forests, boosted and bagged regresijska stabla), metodu potpornih vektora za regresiju (SVR) i Gausov regresijski proces (GPR). Stvorena je i baza podataka o troškovima izgradnje i projektnim karakteristikama za 181 armiranobetonski i prednapeti betonski most za treniranje i ocjenu modela. ; Seven state-of-the-art machine learning techniques for estimation of construction costs of reinforced-concrete and prestressed concrete bridges are investigated in this paper, including artificial neural networks (ANN) and ensembles of ANNs, regression tree ensembles (random forests, boosted and bagged regression trees), support vector regression (SVR) method, and Gaussian process regression (GPR). A database of construction costs and design characteristics for 181 reinforced-concrete and prestressed-concrete bridges is created for model training and evaluation.
Procjena troškova izgradnje AB i prednapetih betonskih mostova primjenom strojnog učenja ; Construction cost estimation of reinforced and prestressed concrete bridges using machine learning
Kovačević, Miljan (author) / Ivanišević, Nenad (author) / Petronijević, Predrag (author) / Despotović, Vladimir (author)
2021-01-01
Građevinar ; ISSN 0350-2465 (Print) ; ISSN 1333-9095 (Online) ; Volume 73 ; Issue 01.
Article (Journal)
Electronic Resource
English , Croatian
DDC:
690
Construction cost estimation of reinforced and prestressed concrete bridges using machine learning
DOAJ | 2021
|Cost estimation of prestressed concrete beam and reinforced concrete slab construction
Taylor & Francis Verlag | 1991
|Experience in construction of prestressed reinforced concrete highway bridges
Engineering Index Backfile | 1963
|