A platform for research: civil engineering, architecture and urbanism
Wind loads on girder bridges
Bridges are facilities that are in exploitation outdoor. Often the wind is the leading horizontal force in the transverse direction. Therefore the bridges have received the due attention in the standards for wind loading. Unfortunately, in all available standards for wind load on the bridges, one, summarized value of the aerodynamic coefficient is indicated. It is related to the entire cross-section of the facility. There is no differentiation for the individual longitudinal girders and/or roadway. Information about the specific wind pressure on each of the bridge’s element is required for the correct design of their supporting systems, whether they are framed or braced type. To fill this gap, the author has built several models of bridges with longitudinal girders, using a Computational Fluid Dynamics (CFD) analysis. Through them he determined the values of the aerodynamic coefficients for each of the bridge girders under the roadway and the cross-section of the bridge as a whole. Conclusions are summarized and the results clearly show the values of the aerodynamic coefficients for the whole section of the bridge are with 50-60% lower than the ones reported for the windward girder.
Wind loads on girder bridges
Bridges are facilities that are in exploitation outdoor. Often the wind is the leading horizontal force in the transverse direction. Therefore the bridges have received the due attention in the standards for wind loading. Unfortunately, in all available standards for wind load on the bridges, one, summarized value of the aerodynamic coefficient is indicated. It is related to the entire cross-section of the facility. There is no differentiation for the individual longitudinal girders and/or roadway. Information about the specific wind pressure on each of the bridge’s element is required for the correct design of their supporting systems, whether they are framed or braced type. To fill this gap, the author has built several models of bridges with longitudinal girders, using a Computational Fluid Dynamics (CFD) analysis. Through them he determined the values of the aerodynamic coefficients for each of the bridge girders under the roadway and the cross-section of the bridge as a whole. Conclusions are summarized and the results clearly show the values of the aerodynamic coefficients for the whole section of the bridge are with 50-60% lower than the ones reported for the windward girder.
Wind loads on girder bridges
Zdravkov, Lyubomir A. (author)
2022-03-24
doi:10.20528/cjsmec.2022.01.002
Challenge Journal of Structural Mechanics; Vol 8, No 1 (2022); 9-16 ; 2149-8024
Article (Journal)
Electronic Resource
English
DDC:
621
ASCE | 2021
|Engineering Index Backfile | 1955
|Rolling loads on railway girder bridges
Engineering Index Backfile | 1914
|Simulation of Dynamic Loads for Girder Bridges
British Library Conference Proceedings | 1990
|Natural Frequency of Railway Girder Bridges under Vehicle Loads
Online Contents | 2003
|