A platform for research: civil engineering, architecture and urbanism
Vented dust explosions: comparing experiments, simulations and standards
A vented corn starch dust explosion in an 11.5 m3 vessel is studied by comparing experiments, simulations and thestandards. The reduced explosion overpressure inside the vessel is recorded using two pressure sensors installed on theinner wall of the vessel. 3D Unsteady Reynolds-Averaged Navier-Stokes simulations of the experiment are performedusing the Flame Speed Closure (FSC) model and its extended version. The FSC model predicts the influence of turbulenceon premixed combustion, and the extended version allows for self-acceleration of a large-scale flame kernel, which isassociated with the combustion-induced thermal expansion effect. Such an extension is highly relevant to large-scaleindustrial application. The explosion overpressure-time trace computed using the extended FSC model agrees reasonablywell with the experimental data. Furthermore, the effect of vent size and ignition location on the explosion overpressureis studied by comparing the simulation results and the standards. The developed numerical tool and model is especiallyuseful for scenarios, which are not addressed in the standards, and it deserves further study in simulations of other largescalesdust or gaseous explosions together with comparison with experiments.
Vented dust explosions: comparing experiments, simulations and standards
A vented corn starch dust explosion in an 11.5 m3 vessel is studied by comparing experiments, simulations and thestandards. The reduced explosion overpressure inside the vessel is recorded using two pressure sensors installed on theinner wall of the vessel. 3D Unsteady Reynolds-Averaged Navier-Stokes simulations of the experiment are performedusing the Flame Speed Closure (FSC) model and its extended version. The FSC model predicts the influence of turbulenceon premixed combustion, and the extended version allows for self-acceleration of a large-scale flame kernel, which isassociated with the combustion-induced thermal expansion effect. Such an extension is highly relevant to large-scaleindustrial application. The explosion overpressure-time trace computed using the extended FSC model agrees reasonablywell with the experimental data. Furthermore, the effect of vent size and ignition location on the explosion overpressureis studied by comparing the simulation results and the standards. The developed numerical tool and model is especiallyuseful for scenarios, which are not addressed in the standards, and it deserves further study in simulations of other largescalesdust or gaseous explosions together with comparison with experiments.
Vented dust explosions: comparing experiments, simulations and standards
Huang, Chen (author) / Bloching, Marius (author) / Lipatnikov, Andrei (author)
2022-01-01
Conference paper
Electronic Resource
English
Dust explosions in vented silos: Simulations and comparisons with current standards
BASE | 2011
|Pressure effects from vented dust explosions
Tema Archive | 2001
|Thermal Radiation from Vented Dust Explosions
British Library Conference Proceedings | 2001
|Thermal radiation from vented dust explosions
Tema Archive | 2000
|Scaling parameters for vented gas and dust explosions
Tema Archive | 2001
|