A platform for research: civil engineering, architecture and urbanism
AUTOMATIC RECONSTRUCTION OF ROOF MODELS FROM BUILDING OUTLINES AND AERIAL IMAGE DATA
The knowledge of roof shapes is essential for the creation of 3D building models. Many experts and researchers use 3D building models for specialized tasks, such as creating noise maps, estimating the solar potential of roof structures, and planning new wireless infrastructures. Our aim is to introduce a technique for automating the creation of topologically correct roof building models using outlines and aerial image data. In this study, we used building footprints and vertical aerial survey photographs. Aerial survey photographs enabled us to produce an orthophoto and a digital surface model of the analysed area. The developed technique made it possible to detect roof edges from the orthophoto and to categorize the edges using spatial relationships and height information derived from the digital surface model. This method allows buildings with complicated shapes to be decomposed into simple parts that can be processed separately. In our study, a roof type and model were determined for each building part and tested with multiple datasets with different levels of quality. Excellent results were achieved for simple and medium complex roofs. Results for very complex roofs were unsatisfactory. For such structures, we propose using multitemporal images because these can lead to significant improvements and a better roof edge detection. The method used in this study was shared with the Czech national mapping agency and could be used for the creation of new 3D modelling products in the near future.
AUTOMATIC RECONSTRUCTION OF ROOF MODELS FROM BUILDING OUTLINES AND AERIAL IMAGE DATA
The knowledge of roof shapes is essential for the creation of 3D building models. Many experts and researchers use 3D building models for specialized tasks, such as creating noise maps, estimating the solar potential of roof structures, and planning new wireless infrastructures. Our aim is to introduce a technique for automating the creation of topologically correct roof building models using outlines and aerial image data. In this study, we used building footprints and vertical aerial survey photographs. Aerial survey photographs enabled us to produce an orthophoto and a digital surface model of the analysed area. The developed technique made it possible to detect roof edges from the orthophoto and to categorize the edges using spatial relationships and height information derived from the digital surface model. This method allows buildings with complicated shapes to be decomposed into simple parts that can be processed separately. In our study, a roof type and model were determined for each building part and tested with multiple datasets with different levels of quality. Excellent results were achieved for simple and medium complex roofs. Results for very complex roofs were unsatisfactory. For such structures, we propose using multitemporal images because these can lead to significant improvements and a better roof edge detection. The method used in this study was shared with the Czech national mapping agency and could be used for the creation of new 3D modelling products in the near future.
AUTOMATIC RECONSTRUCTION OF ROOF MODELS FROM BUILDING OUTLINES AND AERIAL IMAGE DATA
Hron, Vojtěch (author) / Halounová, Lena (author) / Czech Technical University in Prague
2019-11-01
doi:10.14311/AP.2019.59.0448
Acta Polytechnica; Vol 59, No 5 (2019); 448-457 ; 1805-2363 ; 1210-2709
Article (Journal)
Electronic Resource
English
DDC:
720
Automatic building outlines detection and approximation from airborne LIDAR data
British Library Conference Proceedings | 2008
|Investigation on roof segmentation for 3D building reconstruction from aerial LIDAR point clouds
BASE | 2019
|