A platform for research: civil engineering, architecture and urbanism
Advances in Ventilation Heat Recovery : An assessment of peak loads shaving using renewables
The building sector accounts for approximately 40% of total global energy usage.In residential buildings located in cold climate countries, 30-60% of this energy isused for space heating, 20–30% is lost by discarded residential wastewater, and therest is devoted to ventilation heat loss.Sweden experienced a construction boom during the so-called Million Programme(MP) in the 1960s and 1970s. A retrofit requirement of buildings constructed duringthis era shifted from pure exhaust ventilation to mechanical ventilation with heatrecovery (MVHR), which peaked in Swedish dwellings between 1990 and 2000. It isestimated that 43% of Swedish multi-family buildings built during this decade wereequipped with MVHR systems. A common problem with efficient MVHR systemsis frost formation during cold winter hours when cold outdoor air and humid, warmreturn air exchange heat in the air handling unit. Outdoor air preheating usinglocally available renewable heat sources has been an alternative solution to preventfrost formation in the heat exchanger.The main objective of this work was to investigate the solutions for improving theperformance of MVHR systems during the coldest periods of the year. The primaryfocus was frosting, a critical problem in MVHR units that operate duringcold periods. The recovered heat from discarded wastewater and the local geothermalenergy were the two investigated renewable heat sources used to preheat theincoming cold outdoor air to the MVHR in order to prevent frost formation on theheat exchanger surface.The performance of the suggested outdoor air preheating systems and the impactof air preheating on the entire system’s thermal efficiency were evaluated by TRNSYSdynamic simulations. Temperature control systems were proposed based onthe identified frost thresholds to efficiently use the limited thermal capacity ofwastewater and maintain a high heat recovery of MVHR. Two outdoor air preheatingsystems configurations with temperature-stratified and -unstratified tanks weredesigned and compared. A life ...
Advances in Ventilation Heat Recovery : An assessment of peak loads shaving using renewables
The building sector accounts for approximately 40% of total global energy usage.In residential buildings located in cold climate countries, 30-60% of this energy isused for space heating, 20–30% is lost by discarded residential wastewater, and therest is devoted to ventilation heat loss.Sweden experienced a construction boom during the so-called Million Programme(MP) in the 1960s and 1970s. A retrofit requirement of buildings constructed duringthis era shifted from pure exhaust ventilation to mechanical ventilation with heatrecovery (MVHR), which peaked in Swedish dwellings between 1990 and 2000. It isestimated that 43% of Swedish multi-family buildings built during this decade wereequipped with MVHR systems. A common problem with efficient MVHR systemsis frost formation during cold winter hours when cold outdoor air and humid, warmreturn air exchange heat in the air handling unit. Outdoor air preheating usinglocally available renewable heat sources has been an alternative solution to preventfrost formation in the heat exchanger.The main objective of this work was to investigate the solutions for improving theperformance of MVHR systems during the coldest periods of the year. The primaryfocus was frosting, a critical problem in MVHR units that operate duringcold periods. The recovered heat from discarded wastewater and the local geothermalenergy were the two investigated renewable heat sources used to preheat theincoming cold outdoor air to the MVHR in order to prevent frost formation on theheat exchanger surface.The performance of the suggested outdoor air preheating systems and the impactof air preheating on the entire system’s thermal efficiency were evaluated by TRNSYSdynamic simulations. Temperature control systems were proposed based onthe identified frost thresholds to efficiently use the limited thermal capacity ofwastewater and maintain a high heat recovery of MVHR. Two outdoor air preheatingsystems configurations with temperature-stratified and -unstratified tanks weredesigned and compared. A life ...
Advances in Ventilation Heat Recovery : An assessment of peak loads shaving using renewables
Nourozi, Behrouz (author)
2022-01-01
Theses
Electronic Resource
English
DDC:
690
Controlling electricity costs with peak shaving
British Library Online Contents | 2002
Peak Shaving Using Natural Gas Engine-Driven Chillers
British Library Online Contents | 1998
|Computer Assisted Peak Shaving Saves Operating Dollars
British Library Conference Proceedings | 1994
|