A platform for research: civil engineering, architecture and urbanism
Integrating embodied greenhouse gas emissions assessment into the structural design of tall buildings: A framework and software tool for design decision-making
Urgent changes are needed in the construction industry to address the adverse effects of material production on the environment. The construction of tall buildings results in a high temporal and spatial concentration of greenhouse gas (GHG) emissions. This is largely due to the compounding influence of wind and earthquake loads on structural material requirements. Thus, to meet short-term climate change mitigation goals, the structural design of tall buildings must consider and minimise the embodied GHG emissions of structural systems. This study aimed to develop a framework to inform the design of tall building structural systems in order to minimise their embodied GHG emissions. A software tool was developed to implement the framework and automate the design, analysis, and embodied GHG emissions assessment of structural systems for tall buildings. Approximately 1,000 building models were iteratively designed, analysed, and assessed using the software tool. Through regression analyses, the resulting dataset was used to construct predictive models for the embodied GHG emissions of 12 unique combinations of structural system typologies and materials. By applying the framework and software tool to a 52-storey case study building, it is estimated that optimising structural material choices and geometric design strategies could reduce the embodied GHG emissions of tall building structural systems by up to 20% compared to current practices. The developed framework and software tool allow designers to use environmental assessment as a design decision-making tool, rather than an appraisal method for evaluating completed buildings, helping to reduce the environmental effects associated with tall building construction.
Integrating embodied greenhouse gas emissions assessment into the structural design of tall buildings: A framework and software tool for design decision-making
Urgent changes are needed in the construction industry to address the adverse effects of material production on the environment. The construction of tall buildings results in a high temporal and spatial concentration of greenhouse gas (GHG) emissions. This is largely due to the compounding influence of wind and earthquake loads on structural material requirements. Thus, to meet short-term climate change mitigation goals, the structural design of tall buildings must consider and minimise the embodied GHG emissions of structural systems. This study aimed to develop a framework to inform the design of tall building structural systems in order to minimise their embodied GHG emissions. A software tool was developed to implement the framework and automate the design, analysis, and embodied GHG emissions assessment of structural systems for tall buildings. Approximately 1,000 building models were iteratively designed, analysed, and assessed using the software tool. Through regression analyses, the resulting dataset was used to construct predictive models for the embodied GHG emissions of 12 unique combinations of structural system typologies and materials. By applying the framework and software tool to a 52-storey case study building, it is estimated that optimising structural material choices and geometric design strategies could reduce the embodied GHG emissions of tall building structural systems by up to 20% compared to current practices. The developed framework and software tool allow designers to use environmental assessment as a design decision-making tool, rather than an appraisal method for evaluating completed buildings, helping to reduce the environmental effects associated with tall building construction.
Integrating embodied greenhouse gas emissions assessment into the structural design of tall buildings: A framework and software tool for design decision-making
Helal, James (author) / Stephan, André (author) / Crawford, Robert H. (author) / UCL - SST/LAB - Louvain research institute for Landscape, Architecture, Built environment
2023-01-01
doi:10.1016/j.enbuild.2023.113462
Energy and Buildings, Vol. 297, no.00, p. 113462 (2023)
Article (Journal)
Electronic Resource
English