A platform for research: civil engineering, architecture and urbanism
Space and water heating in UK multi-residential buildings: comparison of heating systems and heating design parameters
Space and water heating comprise a large part of the energy needs of a domestic building. The energy performance of the heating systems depends directly on their operating efficiency and indirectly on the heat losses of the building. This study examines the energy performance of various space and water heating systems in a multi-residential building in the UK. Multi-residential buildings are characterised by diverse use of the spaces and the services by the occupants with consequent varying heating loads and operation schedules that the heating systems have to deal with. The energy performance of the systems is analysed in terms of energy consumption, C02 emissions and running cost. Heating design parameters such as localisation or centralisation of the installation of the systems, ventilation rate and heating set point temperature are also examined and their potential of saving heating energy is estimated. Results showed that a ground source heat pump system produces the lowest C02 emissions (5.92 tnC02 per annum) amongst the systems examined (9.76 tnC02 per annum in average). A localised gas-fired warm air system can save 8% of C02 emissions compared to a centralised version of the same system. Great savings can be achieved by lowering the ventilation rate (23%-26% C02 reduction) and lowering the heating set point temperature (23%-27% CQ2 reduction).
Space and water heating in UK multi-residential buildings: comparison of heating systems and heating design parameters
Space and water heating comprise a large part of the energy needs of a domestic building. The energy performance of the heating systems depends directly on their operating efficiency and indirectly on the heat losses of the building. This study examines the energy performance of various space and water heating systems in a multi-residential building in the UK. Multi-residential buildings are characterised by diverse use of the spaces and the services by the occupants with consequent varying heating loads and operation schedules that the heating systems have to deal with. The energy performance of the systems is analysed in terms of energy consumption, C02 emissions and running cost. Heating design parameters such as localisation or centralisation of the installation of the systems, ventilation rate and heating set point temperature are also examined and their potential of saving heating energy is estimated. Results showed that a ground source heat pump system produces the lowest C02 emissions (5.92 tnC02 per annum) amongst the systems examined (9.76 tnC02 per annum in average). A localised gas-fired warm air system can save 8% of C02 emissions compared to a centralised version of the same system. Great savings can be achieved by lowering the ventilation rate (23%-26% C02 reduction) and lowering the heating set point temperature (23%-27% CQ2 reduction).
Space and water heating in UK multi-residential buildings: comparison of heating systems and heating design parameters
Apostolakis, K (author)
2007-11-01
Doctoral thesis, UCL (University College London).
Theses
Electronic Resource
English
DDC:
690
Solar water heating for residential buildings
TIBKAT | 1989
|Water Heating Systems Performance in Multi-Family Residential Buildings in Brazil
DOAJ | 2023
|Wall Panel Heating in Residential Buildings
NTIS | 1986
|British Library Conference Proceedings | 2011
|