A platform for research: civil engineering, architecture and urbanism
Development of a techno-economic energy model for low carbon business parks
To mitigate climate destabilisation, global emissions of human-induced greenhouse gases urgently need to be reduced, to be nearly zeroed at the end of the century. Clear targets are set at European level for the reduction of greenhouse gas emissions and primary energy consumption and for the integration of renewable energy. Carbon dioxide emissions from fossil fuel combustion in the industry and energy sectors account for a major share of greenhouse gas emissions. Hence, a low carbon shift in industrial and business park energy systems is called for. Low carbon business parks minimise energy-related carbon dioxide emissions by enhanced energy efficiency, heat recovery in and between companies, maximal exploitation of local renewable energy production, and energy storage, combined in a collective energy system. Moreover, companies with complementary energy profiles are clustered to exploit energy synergies. The design of low carbon energy systems is facilitated using the holistic approach of techno-economic energy models. These models take into account the complex interactions between the components of an energy system and assist in determining an optimal trade-off between energetic, economic and environmental performances. In this work, existing energy model classifications are scanned for adequate model characteristics and accordingly, a confined number of energy models are selected and described. Subsequently, a practical categorisation is proposed, existing of energy system evolution, optimisation, simulation, accounting and integration models, while key model features are compared. Next, essential features for modelling energy systems at business park scale are identified: As a first key feature, a superstructure-based optimisation approach avoids the need for a priori decisions on the system’s configuration, since a mathematical algorithm automatically identifies the optimal configuration in a superstructure that embeds all feasible configurations. Secondly, the representation of time needs to incorporate ...
Development of a techno-economic energy model for low carbon business parks
To mitigate climate destabilisation, global emissions of human-induced greenhouse gases urgently need to be reduced, to be nearly zeroed at the end of the century. Clear targets are set at European level for the reduction of greenhouse gas emissions and primary energy consumption and for the integration of renewable energy. Carbon dioxide emissions from fossil fuel combustion in the industry and energy sectors account for a major share of greenhouse gas emissions. Hence, a low carbon shift in industrial and business park energy systems is called for. Low carbon business parks minimise energy-related carbon dioxide emissions by enhanced energy efficiency, heat recovery in and between companies, maximal exploitation of local renewable energy production, and energy storage, combined in a collective energy system. Moreover, companies with complementary energy profiles are clustered to exploit energy synergies. The design of low carbon energy systems is facilitated using the holistic approach of techno-economic energy models. These models take into account the complex interactions between the components of an energy system and assist in determining an optimal trade-off between energetic, economic and environmental performances. In this work, existing energy model classifications are scanned for adequate model characteristics and accordingly, a confined number of energy models are selected and described. Subsequently, a practical categorisation is proposed, existing of energy system evolution, optimisation, simulation, accounting and integration models, while key model features are compared. Next, essential features for modelling energy systems at business park scale are identified: As a first key feature, a superstructure-based optimisation approach avoids the need for a priori decisions on the system’s configuration, since a mathematical algorithm automatically identifies the optimal configuration in a superstructure that embeds all feasible configurations. Secondly, the representation of time needs to incorporate ...
Development of a techno-economic energy model for low carbon business parks
Timmerman, Jonas (author) / Van Eetvelde, Greet / Vandevelde, Lieven
2015-01-01
Theses
Electronic Resource
English
DDC:
690
Wiley | 2002
|Online Contents | 1995
|