A platform for research: civil engineering, architecture and urbanism
Data-Driven Predictive Maintenance of Wind Turbine Based on SCADA Data
Rystad Energy’s analysis shows that installed offshore wind capacity will rise to 27.5 GW in 2026 from 10.5 GW in 2020. This report indicates that increasingly complex maintenance needs must be met for wind turbines(WTs). IRENA report shows that offshore wind operation and maintenance (O&M) costs typically constitute 16-25% of the cost of electricity for offshore wind farms deployed in the G20 countries. Data collection and analytics, predictive maintenance, and production output optimisation of WTs must be explored to increase operational reliability and reduce maintenance costs of WTs. Predictive maintenance in wind turbines can be achieved by analysing data obtained by sensors already equipped with the WT. This network of sensors forms part of a Supervisory Control and Data Acquisition (SCADA) system. We developed a method for monitoring and detecting anomalies in the WT critical components, such as the gearbox and the generator. The proposed approach is based on the historical SCADA data that is common in most wind farms. We developed models using extreme gradient boosting (XGBoost) and Long Short-Term Memory (LSTM) to build the characteristics behaviour of critical WT components, and Statistical Process Control (SPC) was used to evaluate its anomalous behaviour. The proposed method was tested on two real case studies regarding six different WT to determine its effectiveness and applicability.
Data-Driven Predictive Maintenance of Wind Turbine Based on SCADA Data
Rystad Energy’s analysis shows that installed offshore wind capacity will rise to 27.5 GW in 2026 from 10.5 GW in 2020. This report indicates that increasingly complex maintenance needs must be met for wind turbines(WTs). IRENA report shows that offshore wind operation and maintenance (O&M) costs typically constitute 16-25% of the cost of electricity for offshore wind farms deployed in the G20 countries. Data collection and analytics, predictive maintenance, and production output optimisation of WTs must be explored to increase operational reliability and reduce maintenance costs of WTs. Predictive maintenance in wind turbines can be achieved by analysing data obtained by sensors already equipped with the WT. This network of sensors forms part of a Supervisory Control and Data Acquisition (SCADA) system. We developed a method for monitoring and detecting anomalies in the WT critical components, such as the gearbox and the generator. The proposed approach is based on the historical SCADA data that is common in most wind farms. We developed models using extreme gradient boosting (XGBoost) and Long Short-Term Memory (LSTM) to build the characteristics behaviour of critical WT components, and Statistical Process Control (SPC) was used to evaluate its anomalous behaviour. The proposed method was tested on two real case studies regarding six different WT to determine its effectiveness and applicability.
Data-Driven Predictive Maintenance of Wind Turbine Based on SCADA Data
Udo, Wisdom (author) / Muhammad, Yar (author)
2021-12-03
Udo , W & Muhammad , Y 2021 , ' Data-Driven Predictive Maintenance of Wind Turbine Based on SCADA Data ' , IEEE Access , vol. 9 , pp. 162370 - 162388 . https://doi.org/10.1109/ACCESS.2021.3132684
Article (Journal)
Electronic Resource
English
DDC:
690
Wind Turbine Structural Health Monitoring: A Short Investigation Based on SCADA Data
British Library Conference Proceedings | 2014
|Multivariate SCADA data analysis methods for real-world wind turbine power curve monitoring
BASE | 2021
|Multi-Scale Wind Turbine Bearings Supervision Techniques Using Industrial SCADA and Vibration Data
BASE | 2021
|