A platform for research: civil engineering, architecture and urbanism
Train Based Automated Inspection for Railway Fastening System
Rail transportation is a sustainable mode of transportation and is a key enabler of the socio-economic development of modern society through passenger and freight services. Growth in overall transport demand has led to railways experiencing higher demand on operational capacity, service quality, and safety. However, an increase in traffic and load can lead to an increase in degradation of the components and thus cause a reduction in the infrastructure quality. Such degradation leads to failures of components, consequently resulting in a higher frequency of interventions for maintenance and renewal activities. The downtime arising from such maintenance and renewal of networks is a significant contributor to the delays incurred to the passengers. A plausible solution to attain higher operational capacity and quality of service with the existing infrastructure and minimise delays due to failure would be to inspect the track and its components frequently using in-service trains, operating in regular traffic. One of the crucial components in rail tracks is the rail fastening system, which acts as a means to fix the rails onto the sleeper, upholding the track stability and track gauge. Failures of fasteners can increase wheel flange wear, reduce the safety of train operations, and may lead to derailment due to gage widening or wheel climb. In Sweden, the inspection of track fasteners is mainly carried out either manually by trained inspectors or by using measurement cars. Manual inspections are slow, cost-intensive, labour-intensive, pose safety issues for maintenance personal involved, and are prone to human errors. Inspections based on measurement cars are cost intensive and requires track possession and thus cannot be utilised frequently without compromising the operational capacity. Further, the adverse weather condition, especially in the north of Sweden for the majority of the year, limit regular fastener inspection that depends on such traditional inspection methods. The research presented in this thesis has ...
Train Based Automated Inspection for Railway Fastening System
Rail transportation is a sustainable mode of transportation and is a key enabler of the socio-economic development of modern society through passenger and freight services. Growth in overall transport demand has led to railways experiencing higher demand on operational capacity, service quality, and safety. However, an increase in traffic and load can lead to an increase in degradation of the components and thus cause a reduction in the infrastructure quality. Such degradation leads to failures of components, consequently resulting in a higher frequency of interventions for maintenance and renewal activities. The downtime arising from such maintenance and renewal of networks is a significant contributor to the delays incurred to the passengers. A plausible solution to attain higher operational capacity and quality of service with the existing infrastructure and minimise delays due to failure would be to inspect the track and its components frequently using in-service trains, operating in regular traffic. One of the crucial components in rail tracks is the rail fastening system, which acts as a means to fix the rails onto the sleeper, upholding the track stability and track gauge. Failures of fasteners can increase wheel flange wear, reduce the safety of train operations, and may lead to derailment due to gage widening or wheel climb. In Sweden, the inspection of track fasteners is mainly carried out either manually by trained inspectors or by using measurement cars. Manual inspections are slow, cost-intensive, labour-intensive, pose safety issues for maintenance personal involved, and are prone to human errors. Inspections based on measurement cars are cost intensive and requires track possession and thus cannot be utilised frequently without compromising the operational capacity. Further, the adverse weather condition, especially in the north of Sweden for the majority of the year, limit regular fastener inspection that depends on such traditional inspection methods. The research presented in this thesis has ...
Train Based Automated Inspection for Railway Fastening System
Chandran, Praneeth (author)
2022-01-01
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, 1402-1544
Theses
Electronic Resource
English