A platform for research: civil engineering, architecture and urbanism
Advanced Warehouse Energy Storage System Control Using Deep Supervisedand Reinforcement Learning
The world is undergoing a shift from fossil fuels to renewable energy sources due to the threat of global warming, which has led to a substantial increase in complex buildingintegrated energy systems. These systems increasingly feature local renewable energy production and energy storage systems that require intelligent control algorithms. Traditional approaches, such as rule-based algorithms, are dependent upon timeconsuming human expert design and maintenance to control the energy systems efficiently. Although machine learning has gained increasing amounts of research attention in recent years, its application to energy cost optimization in warehouses still remains in a relatively early stage. Suggested newer approaches are often too complex to implement efficiently, very computationally expensive, or lacking in performance. This Ph.D. thesis explores, designs, and verifies the use of deep learning and reinforcement learning approaches to solve the bottleneck of human expert resource dependency with respect to efficient control of complex building-integrated energy systems. A technologically advanced smart warehouse for food storage and distribution is utilized as acase study. The warehouse has a commercially available Intelligent Energy ManagementSystem (IEMS). ; publishedVersion
Advanced Warehouse Energy Storage System Control Using Deep Supervisedand Reinforcement Learning
The world is undergoing a shift from fossil fuels to renewable energy sources due to the threat of global warming, which has led to a substantial increase in complex buildingintegrated energy systems. These systems increasingly feature local renewable energy production and energy storage systems that require intelligent control algorithms. Traditional approaches, such as rule-based algorithms, are dependent upon timeconsuming human expert design and maintenance to control the energy systems efficiently. Although machine learning has gained increasing amounts of research attention in recent years, its application to energy cost optimization in warehouses still remains in a relatively early stage. Suggested newer approaches are often too complex to implement efficiently, very computationally expensive, or lacking in performance. This Ph.D. thesis explores, designs, and verifies the use of deep learning and reinforcement learning approaches to solve the bottleneck of human expert resource dependency with respect to efficient control of complex building-integrated energy systems. A technologically advanced smart warehouse for food storage and distribution is utilized as acase study. The warehouse has a commercially available Intelligent Energy ManagementSystem (IEMS). ; publishedVersion
Advanced Warehouse Energy Storage System Control Using Deep Supervisedand Reinforcement Learning
Opalic, Sven Myrdahl (author)
2023-01-01
cristin:2187955
194 ; 435
Theses
Electronic Resource
English
DDC:
690
MECHANICAL STORAGE WAREHOUSE CONTROLLER AND MECHANICAL STORAGE WAREHOUSE CONTROL METHOD
European Patent Office | 2016
|COLD STORAGE WAREHOUSE FIRE: LEARNING FROM WORCESTER
British Library Online Contents | 2002
|