A platform for research: civil engineering, architecture and urbanism
Energy dissipation capacity of precast concrete beam-column joint connected by double notch subjected to cyclic lateral loading
This paper presents the experimental investigation of full-scale precast concrete beam-column connections subjected to cyclic lateral loading. The specimen consists of three models. Two of which are precast beam-column connections and one is monolith. The precast and monolith specimen were designed for the same strength. The cross-sectional dimensions of the beam 250 mm x 300 mm and column 300 mm x 300 mm. Connections are placed in plastic hinge area, with a distance of h (beam height) from the face of the column which is expected to occur first destruction. Precast construction joints are distinguished, with 3 different models, namely monolith, double notch type 1 (STR-1), and double notch type 2 (STR-2). Maximum load capacity, hysterical behavior and energy dissipation are measured, and capacity is compared. The results showed that beam-column joint STR-2 are better able to absorb energy than beam column joint monolith and beam-column joint STR-1. Kumulative energy dissipation of monolith about 9333.07 kN-mm, STR-1 is 8336.76 kN-mm, and STR-2 is 10162.52 kN-mm. The use of dual notch connections (STR-1 and STR-2) provides satisfactory performance, which is marked by meeting the minimum relative energy dissipation ratio at a 3.5% drift according to the ACI Committee 374.1-05. The results show that the STR-2 beam-column connection is more capable of absorbing energy than the monolith beam-column connection and STR-1 beam connection. the value of monolithic cumulative energy dissipation is around 9333.07 kN-mm, STR-1 is 8336.76 kN-mm, and STR-2 is 10162.52 kN-mm. in principle, all three test specimens, monoliths, STR-1 and STR-2 provide satisfactory stability performance under lateral cyclic loads, because they still meet the minimum relative energy dissipation ratio at a deviation of 3.5% according to the ACI Committee 374.1 -05
Energy dissipation capacity of precast concrete beam-column joint connected by double notch subjected to cyclic lateral loading
This paper presents the experimental investigation of full-scale precast concrete beam-column connections subjected to cyclic lateral loading. The specimen consists of three models. Two of which are precast beam-column connections and one is monolith. The precast and monolith specimen were designed for the same strength. The cross-sectional dimensions of the beam 250 mm x 300 mm and column 300 mm x 300 mm. Connections are placed in plastic hinge area, with a distance of h (beam height) from the face of the column which is expected to occur first destruction. Precast construction joints are distinguished, with 3 different models, namely monolith, double notch type 1 (STR-1), and double notch type 2 (STR-2). Maximum load capacity, hysterical behavior and energy dissipation are measured, and capacity is compared. The results showed that beam-column joint STR-2 are better able to absorb energy than beam column joint monolith and beam-column joint STR-1. Kumulative energy dissipation of monolith about 9333.07 kN-mm, STR-1 is 8336.76 kN-mm, and STR-2 is 10162.52 kN-mm. The use of dual notch connections (STR-1 and STR-2) provides satisfactory performance, which is marked by meeting the minimum relative energy dissipation ratio at a 3.5% drift according to the ACI Committee 374.1-05. The results show that the STR-2 beam-column connection is more capable of absorbing energy than the monolith beam-column connection and STR-1 beam connection. the value of monolithic cumulative energy dissipation is around 9333.07 kN-mm, STR-1 is 8336.76 kN-mm, and STR-2 is 10162.52 kN-mm. in principle, all three test specimens, monoliths, STR-1 and STR-2 provide satisfactory stability performance under lateral cyclic loads, because they still meet the minimum relative energy dissipation ratio at a deviation of 3.5% according to the ACI Committee 374.1 -05
Energy dissipation capacity of precast concrete beam-column joint connected by double notch subjected to cyclic lateral loading
Ruminsar Simbolon (author) / Herman Parung (author) / Rita Irmawaty (author) / Arwin Amiruddin (author)
2021-09-06
doi:10.31580/ojst.v4i2.1675
Open Journal of Science and Technology; Vol 4 No 2 (2021): June; 59-69 ; 2664-7974 ; 2664-7966
Article (Journal)
Electronic Resource
English
DDC:
690
British Library Online Contents | 1995
|Hysteretic Performance of Precast Beam-Column Joint with Improved Energy Dissipation Capacity
Springer Verlag | 2022
|Cyclic Loading of Ductile Precast Concrete Beam-Column Connection
Online Contents | 2003
|