A platform for research: civil engineering, architecture and urbanism
Systematic Quantification of Biogas Potential in Urban Organic Waste
Der er en stigende interesse for at indføre separat indsamling af bioaffald fra husholdninger, restauranter samt kommercielle og industrielle kilder med henblik på biologisk behandling og genindvinding af energi og næringsstoffer. Kommende lovgivning har til formål at fremme og motivere produktion af biogas fra bioaffald, fremfor forbrænding og deponering. Det forventes, at produktionen af biogas, fra bioaffald af urban oprindelse, vil bidrage til opfyldelse af EU’s mål om, at 20% af den samlede energiproduktion og 10% af transportens brændstofforbrug fremstilles med fornybare råmaterialer ved udgangen af 2020. Danmarks nationale energistrategi er at blive fuldstændig fossilfri inden 2050. Der er dog tekniske udfordringer og barrierer, som skal overvindes for at gøre produktionen af biogas mere attraktiv. I denne henseende er der behov for systematisk kvantificering af biogaspotentialet for forskellige typer af urban organisk affald, for herved at kunne analysere og forbedre processerne for biogasproduktion. Konventionelt kvantificeres den potentielle biogasproduktion ved at analysere det biokemiske methanpotentiale (BMP) og ved anaerob forgasning i biogasreaktorer. Imidlertid er bestemmelsen af BMP ved batchinkuberings tests og monitorering af biogasproduktionen, i fx laboratorieskala reaktorer, særdeles tidskrævende, idet det kan vare fra 30 til 90 dage - eller længere. Analytiske og modelleringsmetoder blev kombineret med formålet om at udvikle en hurtig, pålidelig og robust metode til at forudse BMP af bioaffald af urban oprindelse. Sammenlagt blev metanpotentialet bestemt for 87 organiske affaldsprøver. Yderligere 88 plantebaserede biomasseprøver blev inkluderet for at udvikle en model til kombineret forudsigelse af metan, baseret på nær infrarød reflektans spektroskopi(NIRS). Modellen var moderat succesfuld i forudsigelse af BMP for bioaffald af urban oprindelse, og har potentiale til at erstatte de konventionelle teknikker til BMP-bestemmelse. Modellen leverer et førstehåndsestimat af BMP og biokemisk transformering på mindre end 72 timer, og kan derved give støtte til operatører af biogasanlæg mht. hurtig karakterisering af substratet. En sådan støtte vil muliggøre effektiv beslutningstagning vedrørende forbedring af metanproduktion, optimering af råmaterialehåndtering og identificering af langsomt nedbrydelige råmaterialer, før der træffes beslutninger om hvilke materialer der skal bruges til forgasning. ; Currently, there is growing interest in introducing the separate collection of biowaste from households, restaurants and commercial and industrial sources for biological treatment and the recovery of energy and nutrients. Upcoming policies and legislations promote and incentivise the production of biogas from organic waste rather than incineration and landfilling. The production of biogas from urban organic waste is expected to contribute to reaching the EU target of 20% of overall energy production and 10% of vehicle fuel derived from renewable sources by 2020. The Danish energy strategy is for Demark to become a 100% fossil fuel-free nation by 2050. However, existing technical challenges and barriers must be overcome to make the production of biogas more attractive. In this respect, a systematic quantification of the biogas production potential of various urban organic waste sources is necessary, in order to analyse and improve processes for biogas production. Conventionally, the potential biogas production of organic waste sources is quantified through biochemical methane potential (BMP) analysis and anaerobic digestion in biogas reactors. However, the determination of BMP in batch incubation tests, and monitoring of production in laboratory reactors, for example, is considerably time-consuming and lasts from 30 up to 90 days, or sometimes even longer. Analytical and modelling methods were combined to develop a rapid, reliable and robust method for the BMP prediction of urban organic waste sources. In total, the methane potentials of 87 urban organic waste samples were determined. In addition, 88 plant biomass samples were included in the dataset used for building a combined methane prediction model based on near-infrared reflectance spectroscopy (NIRS). The model was moderately successful in predicting the BMP of urban organic waste sources and could potentially replace traditional techniques currently employed for BMP measurement. The model provides firsthand estimations of BMP and biochemical transformation in fewer than 72 hours, and it could provide support to biogas plant operators seeking to characterise substrate quickly, thereby enabling rapid decisions to improve methane production, optimise feedstock management and help identify slowly degradable feedstock before making a decision on which materials to utilize in the digesters.
Systematic Quantification of Biogas Potential in Urban Organic Waste
Der er en stigende interesse for at indføre separat indsamling af bioaffald fra husholdninger, restauranter samt kommercielle og industrielle kilder med henblik på biologisk behandling og genindvinding af energi og næringsstoffer. Kommende lovgivning har til formål at fremme og motivere produktion af biogas fra bioaffald, fremfor forbrænding og deponering. Det forventes, at produktionen af biogas, fra bioaffald af urban oprindelse, vil bidrage til opfyldelse af EU’s mål om, at 20% af den samlede energiproduktion og 10% af transportens brændstofforbrug fremstilles med fornybare råmaterialer ved udgangen af 2020. Danmarks nationale energistrategi er at blive fuldstændig fossilfri inden 2050. Der er dog tekniske udfordringer og barrierer, som skal overvindes for at gøre produktionen af biogas mere attraktiv. I denne henseende er der behov for systematisk kvantificering af biogaspotentialet for forskellige typer af urban organisk affald, for herved at kunne analysere og forbedre processerne for biogasproduktion. Konventionelt kvantificeres den potentielle biogasproduktion ved at analysere det biokemiske methanpotentiale (BMP) og ved anaerob forgasning i biogasreaktorer. Imidlertid er bestemmelsen af BMP ved batchinkuberings tests og monitorering af biogasproduktionen, i fx laboratorieskala reaktorer, særdeles tidskrævende, idet det kan vare fra 30 til 90 dage - eller længere. Analytiske og modelleringsmetoder blev kombineret med formålet om at udvikle en hurtig, pålidelig og robust metode til at forudse BMP af bioaffald af urban oprindelse. Sammenlagt blev metanpotentialet bestemt for 87 organiske affaldsprøver. Yderligere 88 plantebaserede biomasseprøver blev inkluderet for at udvikle en model til kombineret forudsigelse af metan, baseret på nær infrarød reflektans spektroskopi(NIRS). Modellen var moderat succesfuld i forudsigelse af BMP for bioaffald af urban oprindelse, og har potentiale til at erstatte de konventionelle teknikker til BMP-bestemmelse. Modellen leverer et førstehåndsestimat af BMP og biokemisk transformering på mindre end 72 timer, og kan derved give støtte til operatører af biogasanlæg mht. hurtig karakterisering af substratet. En sådan støtte vil muliggøre effektiv beslutningstagning vedrørende forbedring af metanproduktion, optimering af råmaterialehåndtering og identificering af langsomt nedbrydelige råmaterialer, før der træffes beslutninger om hvilke materialer der skal bruges til forgasning. ; Currently, there is growing interest in introducing the separate collection of biowaste from households, restaurants and commercial and industrial sources for biological treatment and the recovery of energy and nutrients. Upcoming policies and legislations promote and incentivise the production of biogas from organic waste rather than incineration and landfilling. The production of biogas from urban organic waste is expected to contribute to reaching the EU target of 20% of overall energy production and 10% of vehicle fuel derived from renewable sources by 2020. The Danish energy strategy is for Demark to become a 100% fossil fuel-free nation by 2050. However, existing technical challenges and barriers must be overcome to make the production of biogas more attractive. In this respect, a systematic quantification of the biogas production potential of various urban organic waste sources is necessary, in order to analyse and improve processes for biogas production. Conventionally, the potential biogas production of organic waste sources is quantified through biochemical methane potential (BMP) analysis and anaerobic digestion in biogas reactors. However, the determination of BMP in batch incubation tests, and monitoring of production in laboratory reactors, for example, is considerably time-consuming and lasts from 30 up to 90 days, or sometimes even longer. Analytical and modelling methods were combined to develop a rapid, reliable and robust method for the BMP prediction of urban organic waste sources. In total, the methane potentials of 87 urban organic waste samples were determined. In addition, 88 plant biomass samples were included in the dataset used for building a combined methane prediction model based on near-infrared reflectance spectroscopy (NIRS). The model was moderately successful in predicting the BMP of urban organic waste sources and could potentially replace traditional techniques currently employed for BMP measurement. The model provides firsthand estimations of BMP and biochemical transformation in fewer than 72 hours, and it could provide support to biogas plant operators seeking to characterise substrate quickly, thereby enabling rapid decisions to improve methane production, optimise feedstock management and help identify slowly degradable feedstock before making a decision on which materials to utilize in the digesters.
Systematic Quantification of Biogas Potential in Urban Organic Waste
Fitamo, Temesgen Mathewos (author)
2017-01-01
Fitamo , T M 2017 , Systematic Quantification of Biogas Potential in Urban Organic Waste . Technical University of Denmark, DTU Environment , Kgs. Lyngby .
Book
Electronic Resource
English
DDC:
710
Biogas Generation Through Anaerobic Digestion of Organic Waste: A Review
Springer Verlag | 2022
|