A platform for research: civil engineering, architecture and urbanism
Influence of the chloride attack on the post-cracking behavior of Recycled Steel Fiber Reinforced Concrete
The main purpose of the present work is to study the mechanical behavior and durability performance of recycled steel fiber reinforced concrete (RSFRC) under a chloride environment. To this end, the effect of chloride attack on the load-carrying capacity of pre-cracked RSFRC round panels is investigated by performing round panel tests supported on three points (RPT-3ps), considering the influence of the crack width and the fiber distribution/orientation profile. In addition, the influence of the adopted chloride exposure conditions on the post-cracking constitutive laws of the developed RSFRC is also assessed by performing numerical simulations for the prediction of the long-term performance of RSFRC under these aggressive conditions. The tensile stress–crack width relationship of RSFRC is derived by performing an inverse analysis with the RPT-3ps results. The obtained experimental and numerical results show a negligible effect of the chloride attack on the post-cracking behavior of RSFRC for the chloride exposure conditions and pre-crack width levels adopted in this study. ; This research was funded by C.F. research grant PD/BD/113638/2015 provided by Fundação para a Ciência e a Tecnologia (FCT) through the Doctoral Program in Eco Construction and Rehabilitation–EcoCoRe, and J.B. through the project ICoSyTec (POCI-01-0145-FEDER-027990) financed by FCT and co-funded by FEDER through Operational Competitiveness and Internationalization Programme (POCI).
Influence of the chloride attack on the post-cracking behavior of Recycled Steel Fiber Reinforced Concrete
The main purpose of the present work is to study the mechanical behavior and durability performance of recycled steel fiber reinforced concrete (RSFRC) under a chloride environment. To this end, the effect of chloride attack on the load-carrying capacity of pre-cracked RSFRC round panels is investigated by performing round panel tests supported on three points (RPT-3ps), considering the influence of the crack width and the fiber distribution/orientation profile. In addition, the influence of the adopted chloride exposure conditions on the post-cracking constitutive laws of the developed RSFRC is also assessed by performing numerical simulations for the prediction of the long-term performance of RSFRC under these aggressive conditions. The tensile stress–crack width relationship of RSFRC is derived by performing an inverse analysis with the RPT-3ps results. The obtained experimental and numerical results show a negligible effect of the chloride attack on the post-cracking behavior of RSFRC for the chloride exposure conditions and pre-crack width levels adopted in this study. ; This research was funded by C.F. research grant PD/BD/113638/2015 provided by Fundação para a Ciência e a Tecnologia (FCT) through the Doctoral Program in Eco Construction and Rehabilitation–EcoCoRe, and J.B. through the project ICoSyTec (POCI-01-0145-FEDER-027990) financed by FCT and co-funded by FEDER through Operational Competitiveness and Internationalization Programme (POCI).
Influence of the chloride attack on the post-cracking behavior of Recycled Steel Fiber Reinforced Concrete
Frazão, Cristina Maria Vieira (author) / Barros, Joaquim A. O. (author) / Bogas, J. Alexandre (author)
2021-01-01
doi:10.3390/ma14051279
Article (Journal)
Electronic Resource
English
DDC:
690
Post-Cracking Response of Hybrid Recycled/Industrial Steel Fiber-Reinforced Concrete
BASE | 2018
|Durability of recycled steel fiber reinforced concrete in chloride environment
BASE | 2019
|