A platform for research: civil engineering, architecture and urbanism
Theoretical derivation of artificially cemented granular soils strength
This paper provides a theoretical derivation for the unconfined compression strength of artificially cemented granular soils. The proposed developments are based on the concept of superposition of failure strength contributions of the soil and cement phases. The granular matrix obeys the critical state soil mechanics concept, while the strength of the cemented phase can be described using the Drucker-Prager failure criterion. In the process, the analytical relation is suitably adjusted to parallel a recently proposed empirical relationship that links unconfined compression strength of artificially cemented granular soils to an adjusted porosity/cement ratio parameter. While the proposed analytical relation fits well the experimental data for different granular soils and cement curing time, further parametric analysis offers the possibility to explore the effect of some material parameters on the unconfined compression strength of artificially cemented granular soils.
Theoretical derivation of artificially cemented granular soils strength
This paper provides a theoretical derivation for the unconfined compression strength of artificially cemented granular soils. The proposed developments are based on the concept of superposition of failure strength contributions of the soil and cement phases. The granular matrix obeys the critical state soil mechanics concept, while the strength of the cemented phase can be described using the Drucker-Prager failure criterion. In the process, the analytical relation is suitably adjusted to parallel a recently proposed empirical relationship that links unconfined compression strength of artificially cemented granular soils to an adjusted porosity/cement ratio parameter. While the proposed analytical relation fits well the experimental data for different granular soils and cement curing time, further parametric analysis offers the possibility to explore the effect of some material parameters on the unconfined compression strength of artificially cemented granular soils.
Theoretical derivation of artificially cemented granular soils strength
Diambra, Andrea (author) / Ibraim, Erdin (author) / Peccin, A. (author) / Consoli, N. C. (author) / Festugato, L. (author)
2017-05-01
Diambra , A , Ibraim , E , Peccin , A , Consoli , N C & Festugato , L 2017 , ' Theoretical derivation of artificially cemented granular soils strength ' , Journal of Geotechnical and Geoenvironmental Engineering , vol. 143 , no. 5 , 00001646 . https://doi.org/10.1061/(ASCE)GT.1943-5606.0001646
Article (Journal)
Electronic Resource
English
DDC:
624
Theoretical Derivation of Artificially Cemented Granular Soil Strength
Online Contents | 2017
|Theoretical Derivation of Artificially Cemented Granular Soil Strength
Online Contents | 2017
|Theoretical Derivation of Artificially Cemented Granular Soil Strength
British Library Online Contents | 2017
|Parameters controlling stiffness and strength of artificially cemented soils
British Library Online Contents | 2012
|