A platform for research: civil engineering, architecture and urbanism
Parametric design and optimization of arched trusses under vertical and horizontal multi-load cases
This dissertation faces the problem of the optimum design of steel truss arches subject to multiple load cases. Arches are one of the most ancient shape-resistant structures, widely used in both civil engineering and architecture. For instance, arches can be considered as purely compressed structures, provided that their “line of thrust” coincides with the centre line of the arch. The “line of thrust” is the locus of the points of application of the thrusts (internal forces or stress resultants) that must be contained within the cross-section of the arch in such a way that the arch transfers loads to the foundations through axial compressive stresses only. As a matter of fact, the more the “line of thrust” differs from the centre line of the arch, the larger the unfavourable bending moments that arise in the arch. This is the reason why it is fundamental to pay close attention to the choice of the shape for an arch in order to minimize (or avoid when it is possible) unfavourable bending effects. Several analytical, graphical and physical methods are provided to find the optimal shape of a monolithic (single rib) arch subjected to a certain load case (i.e. the “funicular curve” for that load). However, if multiple load cases must be considered, it is not possible to find a proper optimal shape for an arch with single rib. In this case, the choice of truss arches with at least two chords becomes indispensable. Indeed, it has been demonstrated that structural optimization of in-plane truss arches with two chords subjected to a single load case leads to optimal solutions in which upper and lower chords tend to coincide with each other and with the “funicular curve” (i.e. the “line of thrust”) for that load. In light of the above, simultaneous shape and size optimization of steel truss arches with two arched chords linked each other through a bracing system (with variable Pratt-type pattern) has been performed for multiple load cases and different structural boundary conditions. Truss arches are effectively used in ...
Parametric design and optimization of arched trusses under vertical and horizontal multi-load cases
This dissertation faces the problem of the optimum design of steel truss arches subject to multiple load cases. Arches are one of the most ancient shape-resistant structures, widely used in both civil engineering and architecture. For instance, arches can be considered as purely compressed structures, provided that their “line of thrust” coincides with the centre line of the arch. The “line of thrust” is the locus of the points of application of the thrusts (internal forces or stress resultants) that must be contained within the cross-section of the arch in such a way that the arch transfers loads to the foundations through axial compressive stresses only. As a matter of fact, the more the “line of thrust” differs from the centre line of the arch, the larger the unfavourable bending moments that arise in the arch. This is the reason why it is fundamental to pay close attention to the choice of the shape for an arch in order to minimize (or avoid when it is possible) unfavourable bending effects. Several analytical, graphical and physical methods are provided to find the optimal shape of a monolithic (single rib) arch subjected to a certain load case (i.e. the “funicular curve” for that load). However, if multiple load cases must be considered, it is not possible to find a proper optimal shape for an arch with single rib. In this case, the choice of truss arches with at least two chords becomes indispensable. Indeed, it has been demonstrated that structural optimization of in-plane truss arches with two chords subjected to a single load case leads to optimal solutions in which upper and lower chords tend to coincide with each other and with the “funicular curve” (i.e. the “line of thrust”) for that load. In light of the above, simultaneous shape and size optimization of steel truss arches with two arched chords linked each other through a bracing system (with variable Pratt-type pattern) has been performed for multiple load cases and different structural boundary conditions. Truss arches are effectively used in ...
Parametric design and optimization of arched trusses under vertical and horizontal multi-load cases
CONGIU, ELEONORA (author) / FENU, LUIGI
2020-03-06
Theses
Electronic Resource
English
DDC:
720
Suspension bridges with arched stiffening trusses
Engineering Index Backfile | 1929
|Testing, numerical simulation and design of prestressed high strength steel arched trusses
BASE | 2019
|Basic principles for the design of arched roof trusses without tie rods
Engineering Index Backfile | 1921
|Nonlinear design of trusses under multiple load cases using cellular automata
British Library Conference Proceedings | 2003
|