A platform for research: civil engineering, architecture and urbanism
Bridge inspections using unmanned aerial vehicles – A case study in Sweden
The aim of the current project is to digitalize inspections and monitoring of structures’ health using drones in order to identify and allow for easier inspection of damages in transport infrastructure. The objectives set are to perform aerial photogrammetry to recreate the as-is condition to enable off-site inspection of difficult to reach areas in structures and identify damages – e.g. cracks, spalling, corrosion. The drone is controlled either autonomously or with the use of a remote control by a pilot from the ground. The drone can carry a wide range of imaging technologies including still, video and infrared sensors. The high flexibility and accessibility of drones in hard-to-reach or risk exposed areas makes the airborne photogrammetry a better alternative to the ground-based method. Given the potential of UAVs to help bridge inspectors performing inspections off-site, the Swedish Transport Administration developed a demonstration project to evaluate the effectiveness and future opportunities within inspection field. Five bridges of varying sizes and types were selected as demonstrators. Data collection including the 3D model creation has been performed by three different contractors while the model-based inspection for all bridges was performed by the same team. It has been shown that the 3D models could serve as a tool for bridge inspectors from which measurements could be extracted and certain damages identified. A full off-site inspection is currently not feasible as some areas of the bridges were difficult to capture. The models are only providing near-surface information, and therefore, in-depth inspection should not be overlooked. The difficulty to capture local defects such as delaminations and narrow cracks also reduces versatility. The main conclusion from the study is that drones cannot be used independently to conduct inspections. Currently, they can only be used as a complement to traditional inspections. The added value of a 3D model derives from the possibility of using it as tool to better ...
Bridge inspections using unmanned aerial vehicles – A case study in Sweden
The aim of the current project is to digitalize inspections and monitoring of structures’ health using drones in order to identify and allow for easier inspection of damages in transport infrastructure. The objectives set are to perform aerial photogrammetry to recreate the as-is condition to enable off-site inspection of difficult to reach areas in structures and identify damages – e.g. cracks, spalling, corrosion. The drone is controlled either autonomously or with the use of a remote control by a pilot from the ground. The drone can carry a wide range of imaging technologies including still, video and infrared sensors. The high flexibility and accessibility of drones in hard-to-reach or risk exposed areas makes the airborne photogrammetry a better alternative to the ground-based method. Given the potential of UAVs to help bridge inspectors performing inspections off-site, the Swedish Transport Administration developed a demonstration project to evaluate the effectiveness and future opportunities within inspection field. Five bridges of varying sizes and types were selected as demonstrators. Data collection including the 3D model creation has been performed by three different contractors while the model-based inspection for all bridges was performed by the same team. It has been shown that the 3D models could serve as a tool for bridge inspectors from which measurements could be extracted and certain damages identified. A full off-site inspection is currently not feasible as some areas of the bridges were difficult to capture. The models are only providing near-surface information, and therefore, in-depth inspection should not be overlooked. The difficulty to capture local defects such as delaminations and narrow cracks also reduces versatility. The main conclusion from the study is that drones cannot be used independently to conduct inspections. Currently, they can only be used as a complement to traditional inspections. The added value of a 3D model derives from the possibility of using it as tool to better ...
Bridge inspections using unmanned aerial vehicles – A case study in Sweden
Popescu, Cosmin (author) / Mirzazade, Ali (author) / Ohlsson, Ulf (author) / Sas, Gabriel (author) / Häggström, Jens (author)
2021-01-01
Teknisk rapport / Luleå tekniska universitet, 1402-1536
Paper
Electronic Resource
English
Bridge Inspections with Small Unmanned Aircraft Systems: Case Studies
British Library Online Contents | 2019
|Aerial Robotic System for Complete Bridge Inspections
Springer Verlag | 2022
|Application of Unmanned Aerial Vehicle (UAV) for Reservoir Embankment Inspections
British Library Conference Proceedings | 2023
|