A platform for research: civil engineering, architecture and urbanism
Tensor-based signal processing with applications to MIMO-ODFM systems and intelligent reflecting surfaces
Der Einsatz von Tensor-Algebra-Techniken in der Signalverarbeitung hat in den letzten zwei Jahrzehnten zugenommen. Anwendungen wie Bildverarbeitung, biomedizinische Signalverarbeitung, radar, maschinelles Lernen, deep Learning und Kommunikation im Allgemeinen verwenden weitgehend tensorbasierte Verarbeitungstechniken zur Wiederherstellung, Schätzung und Klassifizierung von Signalen. Einer der Hauptgründe für den Einsatz der Tensorsignalverarbeitung ist die Ausnutzung der mehrdimensionalen Struktur von Signalen, wobei die Einzigartigkeitseigenschaften der Tensor-Zerlegung profitieren. Bei der drahtlosen Kommunikation beispielsweise können die Signale mehrere "Dimensionen" haben, wie Raum, Zeit, Frequenz, Polarisation, usw. Diese Arbeit ist in zwei Teile gegliedert. Im ersten Teil betrachten wir die Anwendung von Tensor-basierten Algorithmen für multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) Systeme unter Berücksichtigung von Vorhandensein von Phasenrauschenstörungen. In diesem Teil schlagen wir einen zweistufigen tensorbasierten Empfänger für eine gemeinsame Kanal-, Phasenrausch- und Datenschätzung in MIMO-OFDM-Systemen vor. In der ersten Stufe zeigen wir, dass das empfangene Signal auf den Pilotunterträgern als PARAFAC-Tensor dritter Ordnung modelliert werden kann. Auf der Grundlage dieses Modells werden zwei Algorithmen für die Schätzung der Phasen- und Kanalrauschen in den Pilotton vorgeschlagen. In der zweiten Stufe werden die übertragenen Daten geschätzt. Zu diesem Zweck schlagen wir einen Zero Forcing (ZF)-Empfänger vor, der sich die Tensorstruktur des empfangenen Signals auf den Datenträgern zunutze macht, indem er den vorgeschlagenen selektiven Kronecker-Produkt-Operators (SKP) kapitalisiert. Die Simulationsergebnisse zeigen, dass der vorgeschlagene Empfänger sowohl bei der Symbolfehlerrate als auch beim normalisierten mittleren quadratischen Fehler des geschätzten Kanal- und Phasenrauschmatrizen eine bessere Leistung im Vergleich zum Stand der Technik erzielt. Der ...
Tensor-based signal processing with applications to MIMO-ODFM systems and intelligent reflecting surfaces
Der Einsatz von Tensor-Algebra-Techniken in der Signalverarbeitung hat in den letzten zwei Jahrzehnten zugenommen. Anwendungen wie Bildverarbeitung, biomedizinische Signalverarbeitung, radar, maschinelles Lernen, deep Learning und Kommunikation im Allgemeinen verwenden weitgehend tensorbasierte Verarbeitungstechniken zur Wiederherstellung, Schätzung und Klassifizierung von Signalen. Einer der Hauptgründe für den Einsatz der Tensorsignalverarbeitung ist die Ausnutzung der mehrdimensionalen Struktur von Signalen, wobei die Einzigartigkeitseigenschaften der Tensor-Zerlegung profitieren. Bei der drahtlosen Kommunikation beispielsweise können die Signale mehrere "Dimensionen" haben, wie Raum, Zeit, Frequenz, Polarisation, usw. Diese Arbeit ist in zwei Teile gegliedert. Im ersten Teil betrachten wir die Anwendung von Tensor-basierten Algorithmen für multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) Systeme unter Berücksichtigung von Vorhandensein von Phasenrauschenstörungen. In diesem Teil schlagen wir einen zweistufigen tensorbasierten Empfänger für eine gemeinsame Kanal-, Phasenrausch- und Datenschätzung in MIMO-OFDM-Systemen vor. In der ersten Stufe zeigen wir, dass das empfangene Signal auf den Pilotunterträgern als PARAFAC-Tensor dritter Ordnung modelliert werden kann. Auf der Grundlage dieses Modells werden zwei Algorithmen für die Schätzung der Phasen- und Kanalrauschen in den Pilotton vorgeschlagen. In der zweiten Stufe werden die übertragenen Daten geschätzt. Zu diesem Zweck schlagen wir einen Zero Forcing (ZF)-Empfänger vor, der sich die Tensorstruktur des empfangenen Signals auf den Datenträgern zunutze macht, indem er den vorgeschlagenen selektiven Kronecker-Produkt-Operators (SKP) kapitalisiert. Die Simulationsergebnisse zeigen, dass der vorgeschlagene Empfänger sowohl bei der Symbolfehlerrate als auch beim normalisierten mittleren quadratischen Fehler des geschätzten Kanal- und Phasenrauschmatrizen eine bessere Leistung im Vergleich zum Stand der Technik erzielt. Der ...
Tensor-based signal processing with applications to MIMO-ODFM systems and intelligent reflecting surfaces
Sokal, Bruno (author) / Almeida, André L. F. de / Haardt, Martin
2023-05-22
Theses
Electronic Resource
English
Optical Intelligent Reflecting Surfaces
Wiley | 2023
|Light reflecting surfaces on strategic highway
Engineering Index Backfile | 1942
|Light-reflecting characteristics of pavement surfaces
Engineering Index Backfile | 1939
|British Library Online Contents | 2011
|