A platform for research: civil engineering, architecture and urbanism
Optimization methods for developing electric vehicle charging strategies
Electric vehicles (EVs) are considered to be a crucial and proactive player in the future for transport electrification, energy transition, and emission reduction, as promoted by policy-makers, relevant industries, and the academia. EV charging would account for a non-negligible share in the future electricity demand. The integration of EV brings both challenges and opportunities to the electricity system, mainly from their charging profiles. When EV charging behaviors are uncontrolled, their potentially high charging rate and synchronous charging patterns may result in the bottleneck of the grid capacity and the shortage of generation ramping capacity. However, the promising load shifting potential of EVs can alleviate these problems and even bring additional flexibilities to the demand side for further applications, such as peak shaving and the integration of renewable energy. To grasp these opportunities, novel controlled charging strategies should be developed to help integrate electric vehicles into energy systems. However, corresponding methods in current literature often have customized assumptions or settings so that they might not be practically or widely applied. Furthermore, the attention of literature is more paid to explaining the results of the methods or making consequent policy recommendations, but not sufficiently paid to demonstrating the methods themselves. The lack of the latter might undermine the credibility of the work and hinder readers’ understanding. Therefore, this thesis serves as a methodological framework in response to the fundamental and universal challenges in developing charging strategies for integrating EV into energy systems. The discussions aim to raise readers’ awareness of the essential but often unnoticed concerns in model development and hopefully would enlighten future researchers into this topic. Specifically, this cumulative thesis comprises four papers and analyzes the research topic from two perspectives. With Paper A and Paper B, the micro perspective of the thesis ...
Optimization methods for developing electric vehicle charging strategies
Electric vehicles (EVs) are considered to be a crucial and proactive player in the future for transport electrification, energy transition, and emission reduction, as promoted by policy-makers, relevant industries, and the academia. EV charging would account for a non-negligible share in the future electricity demand. The integration of EV brings both challenges and opportunities to the electricity system, mainly from their charging profiles. When EV charging behaviors are uncontrolled, their potentially high charging rate and synchronous charging patterns may result in the bottleneck of the grid capacity and the shortage of generation ramping capacity. However, the promising load shifting potential of EVs can alleviate these problems and even bring additional flexibilities to the demand side for further applications, such as peak shaving and the integration of renewable energy. To grasp these opportunities, novel controlled charging strategies should be developed to help integrate electric vehicles into energy systems. However, corresponding methods in current literature often have customized assumptions or settings so that they might not be practically or widely applied. Furthermore, the attention of literature is more paid to explaining the results of the methods or making consequent policy recommendations, but not sufficiently paid to demonstrating the methods themselves. The lack of the latter might undermine the credibility of the work and hinder readers’ understanding. Therefore, this thesis serves as a methodological framework in response to the fundamental and universal challenges in developing charging strategies for integrating EV into energy systems. The discussions aim to raise readers’ awareness of the essential but often unnoticed concerns in model development and hopefully would enlighten future researchers into this topic. Specifically, this cumulative thesis comprises four papers and analyzes the research topic from two perspectives. With Paper A and Paper B, the micro perspective of the thesis ...
Optimization methods for developing electric vehicle charging strategies
Wang, Zongfei (author) / Fichtner, Wolf
2022-03-22
Theses
Electronic Resource
English
Review on Optimization of Forecasting and Coordination Strategies for Electric Vehicle Charging
DOAJ | 2023
|American Institute of Physics | 2024
|Long-Trip Optimization of Charging Strategies for Battery Electric Vehicles
British Library Online Contents | 2015
|Electric charging transmitter for electric vehicle charging device
European Patent Office | 2024
|Electric charging transmitter for electric vehicle charging device
European Patent Office | 2025