A platform for research: civil engineering, architecture and urbanism
Seismic Vulnerability Assessment of a Historic Brick Masonry Building by Fragility Functions
This paper aims at contributing to the seismic vulnerability assessment of a historic brick masonry building constructed in Istanbul by comparison of the derived analytical and empirical fragility functions. For this purpose, Incremental Dynamic Analysis for each ground motion record was initially performed by series of Nonlinear Time History Analyses on the most vulnerable façade of the case study building modelled using Equivalent Frame Method. By scaling the PGA values of the fifteen earthquake records selected from PEER NGA West2 Data Base, it was aimed to observe the structural response corresponding the all limit states from yield point to collapse and identify each PGA causing the structure to reach these limit states. Herein, PGA and Spectral Displacements were considered as the seismic intensity parameters, and the ultimate storey drifts were referred as Engineering Demand Parameter. Both analytical and empirical seismic fragility functions were derived using lognormal probability distribution. Consequently, the obtained analytical fragility curves for vulnerability assessment of the building were compared with the fragility curves derived according to European (RISK-UE), HAZUS and Istanbul Building Taxonomies for the same building classification with the case study building in attempt to investigate the concordance of the results. ; publishedVersion
Seismic Vulnerability Assessment of a Historic Brick Masonry Building by Fragility Functions
This paper aims at contributing to the seismic vulnerability assessment of a historic brick masonry building constructed in Istanbul by comparison of the derived analytical and empirical fragility functions. For this purpose, Incremental Dynamic Analysis for each ground motion record was initially performed by series of Nonlinear Time History Analyses on the most vulnerable façade of the case study building modelled using Equivalent Frame Method. By scaling the PGA values of the fifteen earthquake records selected from PEER NGA West2 Data Base, it was aimed to observe the structural response corresponding the all limit states from yield point to collapse and identify each PGA causing the structure to reach these limit states. Herein, PGA and Spectral Displacements were considered as the seismic intensity parameters, and the ultimate storey drifts were referred as Engineering Demand Parameter. Both analytical and empirical seismic fragility functions were derived using lognormal probability distribution. Consequently, the obtained analytical fragility curves for vulnerability assessment of the building were compared with the fragility curves derived according to European (RISK-UE), HAZUS and Istanbul Building Taxonomies for the same building classification with the case study building in attempt to investigate the concordance of the results. ; publishedVersion
Seismic Vulnerability Assessment of a Historic Brick Masonry Building by Fragility Functions
Demirlioglu, Kültigin (author) / Soyoz, Serdar (author)
2023-01-24
11
Book
Electronic Resource
English
DDC:
690
Seismic Vulnerability Assessment of Historic Masonry Buildings through Fragility Curves Approach
BASE | 2022
|Seismic Vulnerability and Risk Assessment of Historic Masonry Buildings
Springer Verlag | 2013
|