A platform for research: civil engineering, architecture and urbanism
Ventilation Performance in Operating Rooms : A Numerical Assessment
Surgical site infections (SSIs) remain one of the most challenging postoperative complicationsof healthcare and threaten the lives of millions of patients each year. Current evidence hasshown a positive relationship between the airborne concentration of bacteria-carryingparticles (BCPs) in the operating room (OR) and the rate of infections. The OR ventilation iscrucial for mitigating the dispersion of airborne bacterial contaminants and thus controllingthe risk of SSIs. A variety of ventilation schemes have been developed for OR use. Each haspros and cons and may be better suited than another for operations under certain conditions.The proper functioning of OR ventilation is also affected by external and internal disruptions.By applying Computational Fluid Dynamics (CFD), the present study investigates the airflowand contaminant distribution in ORs under different conditions.The airflow distribution is of critical importance in removing or diluting airbornecontaminants. The conventional mixing ventilation is not able to reliably create an ultracleanenvironment. The usage of mixing ventilation in infection-prone surgery should be limited,especially when a large surgical team is involved. Laminar airflow (LAF) ventilation demandsa sufficient airflow rate to achieve desired performance. Temperature-controlled airflow(TAF) ventilation represents an effective ventilation scheme that can serve as an energyefficientalternative to LAF.Door openings have a detrimental impact on the microbiological cleanliness of the OR. Thetemperature in the OR and adjacent space should be well controlled to minimize the interzonalcontaminant transfer. Temporarily reducing the OR exhaust flow during door operationforms a directional airflow towards the adjacent space, which is found to be an effectivesolution to ensure the isolation.Surgical lamps serve as physical obstructions in the airflow path and significantly deterioratethe performance of LAF ventilation. It is highly recommended to improve the shape anddesign of the lamps in the ...
Ventilation Performance in Operating Rooms : A Numerical Assessment
Surgical site infections (SSIs) remain one of the most challenging postoperative complicationsof healthcare and threaten the lives of millions of patients each year. Current evidence hasshown a positive relationship between the airborne concentration of bacteria-carryingparticles (BCPs) in the operating room (OR) and the rate of infections. The OR ventilation iscrucial for mitigating the dispersion of airborne bacterial contaminants and thus controllingthe risk of SSIs. A variety of ventilation schemes have been developed for OR use. Each haspros and cons and may be better suited than another for operations under certain conditions.The proper functioning of OR ventilation is also affected by external and internal disruptions.By applying Computational Fluid Dynamics (CFD), the present study investigates the airflowand contaminant distribution in ORs under different conditions.The airflow distribution is of critical importance in removing or diluting airbornecontaminants. The conventional mixing ventilation is not able to reliably create an ultracleanenvironment. The usage of mixing ventilation in infection-prone surgery should be limited,especially when a large surgical team is involved. Laminar airflow (LAF) ventilation demandsa sufficient airflow rate to achieve desired performance. Temperature-controlled airflow(TAF) ventilation represents an effective ventilation scheme that can serve as an energyefficientalternative to LAF.Door openings have a detrimental impact on the microbiological cleanliness of the OR. Thetemperature in the OR and adjacent space should be well controlled to minimize the interzonalcontaminant transfer. Temporarily reducing the OR exhaust flow during door operationforms a directional airflow towards the adjacent space, which is found to be an effectivesolution to ensure the isolation.Surgical lamps serve as physical obstructions in the airflow path and significantly deterioratethe performance of LAF ventilation. It is highly recommended to improve the shape anddesign of the lamps in the ...
Ventilation Performance in Operating Rooms : A Numerical Assessment
Wang, Cong (author)
2019-01-01
Theses
Electronic Resource
English
DDC:
690
British Library Online Contents | 2000
|British Library Conference Proceedings | 2000
|Assessing ventilation system performance in isolation rooms
Elsevier | 2010
|Assessing ventilation system performance in isolation rooms
Online Contents | 2011
|Insulation and ventilation of hospital operating rooms to reduce summer temperature
Engineering Index Backfile | 1935
|