A platform for research: civil engineering, architecture and urbanism
Demand Response Optimization Using Particle Swarm Algorithm Considering Optimum Battery Energy Storage Schedule in a Residential House
Demand response as a distributed resource has proved its significant potential for power systems. It is capable of providing flexibility that, in some cases, can be an advantage to suppress the unpredictability of distributed generation. The ability for participating in demand response programs for small or medium facilities has been limited; with the new policy regulations this limitation might be overstated. The prosumers are a new entity that is considered both as producers and consumers of electricity, which can provide excess production to the grid. Moreover, the decision-making in facilities with different generation resources, energy storage systems, and demand flexibility becomes more complex according to the number of considered variables. This paper proposes a demand response optimization methodology for application in a generic residential house. In this model, the users are able to perform actions of demand response in their facilities without any contracts with demand response service providers. The model considers the facilities that have the required devices to carry out the demand response actions. The photovoltaic generation, the available storage capacity, and the flexibility of the loads are used as the resources to find the optimal scheduling of minimal operating costs. The presented results are obtained using a particle swarm optimization and compared with a deterministic resolution in order to prove the performance of the model. The results show that the use of demand response can reduce the operational daily cost. ; The present work was done and funded in the scope of the following projects: SIMOCE Project (P2020-23575) and UID/EEA/00760/2019 funded by FEDER Funds through COMPETE program and by National Funds through FCT. Ricardo Faia is supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with PhD grant reference SFRH/BD/133086/2017.
Demand Response Optimization Using Particle Swarm Algorithm Considering Optimum Battery Energy Storage Schedule in a Residential House
Demand response as a distributed resource has proved its significant potential for power systems. It is capable of providing flexibility that, in some cases, can be an advantage to suppress the unpredictability of distributed generation. The ability for participating in demand response programs for small or medium facilities has been limited; with the new policy regulations this limitation might be overstated. The prosumers are a new entity that is considered both as producers and consumers of electricity, which can provide excess production to the grid. Moreover, the decision-making in facilities with different generation resources, energy storage systems, and demand flexibility becomes more complex according to the number of considered variables. This paper proposes a demand response optimization methodology for application in a generic residential house. In this model, the users are able to perform actions of demand response in their facilities without any contracts with demand response service providers. The model considers the facilities that have the required devices to carry out the demand response actions. The photovoltaic generation, the available storage capacity, and the flexibility of the loads are used as the resources to find the optimal scheduling of minimal operating costs. The presented results are obtained using a particle swarm optimization and compared with a deterministic resolution in order to prove the performance of the model. The results show that the use of demand response can reduce the operational daily cost. ; The present work was done and funded in the scope of the following projects: SIMOCE Project (P2020-23575) and UID/EEA/00760/2019 funded by FEDER Funds through COMPETE program and by National Funds through FCT. Ricardo Faia is supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with PhD grant reference SFRH/BD/133086/2017.
Demand Response Optimization Using Particle Swarm Algorithm Considering Optimum Battery Energy Storage Schedule in a Residential House
Ricardo Faia (author) / Pedro Faria (author) / Zita Vale (author) / João Spínola (author)
2019-04-30
oai:zenodo.org:3482793
Energies 12(9) 1645
Article (Journal)
Electronic Resource
English
DDC:
690
Optimum Design of Structures with Heuristic Particle Swarm Optimization Algorithm
Springer Verlag | 2011
|Capacity optimization of hydropower storage projects using particle swarm optimization algorithm
British Library Online Contents | 2010
|