A platform for research: civil engineering, architecture and urbanism
Parametric study of the energy potential of a building’s envelope with integrated energy-active elements
Building structures with integrated energy-active elements (BSIEAE) present a progressive alternative for building construction with multifunctional energy functions. The aim was to determine the energy potential of a building envelope with integrated energy-active elements in the function of direct-heating, semi-accumulation and accumulation of large-area radiant heating. The research methodology consists in an analysis of building structures with energy-active elements, creation of mathematical-physical models based on the simplified definition of heat and mass transfer in radiant large-area heating, and a parametric study of the energy potential of individual variants of technical solutions. The results indicate that the increase in heat loss due to the location of the tubes in the structure closer to the exterior is negligible for Variant II, semi-accumulation heating, and Variant III, accumulation heating, as compared to Variant I, direct heating, it is below 1 % of the total delivered heat flux. The direct heat flux to the heated room is 89.17 %, 73.36 %, and 58.46 % of the total heat flux for Variant I, Variant II and Variant III, respectively. For Variant II and Variant III, the heat storage accounts for 14.84 %, and 29.86 % of the total heat flux, respectively. Variants II and III appear to be promising in terms of heat/cool accumulation with an assumption of lower energy demand (at least 10 %) than for low inertia walls. We plan to extend these simplified parametric studies with dynamic computer simulations to optimise the design and composition of the panels with integrated energy-active elements.
Parametric study of the energy potential of a building’s envelope with integrated energy-active elements
Building structures with integrated energy-active elements (BSIEAE) present a progressive alternative for building construction with multifunctional energy functions. The aim was to determine the energy potential of a building envelope with integrated energy-active elements in the function of direct-heating, semi-accumulation and accumulation of large-area radiant heating. The research methodology consists in an analysis of building structures with energy-active elements, creation of mathematical-physical models based on the simplified definition of heat and mass transfer in radiant large-area heating, and a parametric study of the energy potential of individual variants of technical solutions. The results indicate that the increase in heat loss due to the location of the tubes in the structure closer to the exterior is negligible for Variant II, semi-accumulation heating, and Variant III, accumulation heating, as compared to Variant I, direct heating, it is below 1 % of the total delivered heat flux. The direct heat flux to the heated room is 89.17 %, 73.36 %, and 58.46 % of the total heat flux for Variant I, Variant II and Variant III, respectively. For Variant II and Variant III, the heat storage accounts for 14.84 %, and 29.86 % of the total heat flux, respectively. Variants II and III appear to be promising in terms of heat/cool accumulation with an assumption of lower energy demand (at least 10 %) than for low inertia walls. We plan to extend these simplified parametric studies with dynamic computer simulations to optimise the design and composition of the panels with integrated energy-active elements.
Parametric study of the energy potential of a building’s envelope with integrated energy-active elements
Kalús , Daniel (author) / Koudelková, Daniela (author) / Mučková, Veronika (author) / Sokol, Martin (author) / Kurčová, Mária (author) / Šťastný, Patrik (author)
2022-12-31
Acta Polytechnica; Vol 62 No 6 (2022); 595-606 ; Acta Polytechnica; Vol. 62 No. 6 (2022); 595-606 ; 1805-2363
Article (Journal)
Electronic Resource
English
DDC:
690
Operational Energy Saving and Carbon Reduction Benefits of Concrete MiC Building’s Envelope
Springer Verlag | 2024
|Ventilation technics integrated in the building's envelope and structure. The SAV system
British Library Conference Proceedings | 1994
|Exploring A Building's Life Cycle Energy Through CAD
British Library Conference Proceedings | 2002
|