A platform for research: civil engineering, architecture and urbanism
Forecasting the strength of preplaced aggregate concrete using interpretable machine learning approaches
Preplaced aggregate concrete (PAC) also known as two-stage concrete (TSC) is widely used in construction engineering for various applications. To produce PAC, a mixture of Portland cement, sand, and admixtures is injected into a mold subsequent to the deposition of coarse aggregate. This process complicates the prediction of compressive strength (CS), demanding thorough investigation. Consequently, the emphasis of this study is on enhancing the comprehension of PAC compressive strength using machine learning models. Thirteen models are evaluated with 261 data points and eleven input variables. The result depicts that xgboost demonstrates exceptional accuracy with a correlation coefficient of 0.9791 and a normalized coefficient of determination (R 2 ) of 0.9583. Moreover, Gradient boosting (GB) and Cat boost (CB) also perform well due to its robust performance. In addition, Adaboost, Voting regressor, and Random forest yield precise predictions with low mean absolute error (MAE) and root mean square error (RMSE) values. The sensitivity analysis (SA) reveals the significant impact of key input parameters on overall model sensitivity. Notably, gravel takes the lead with a substantial 44.7% contribution, followed by sand at 19.5%, cement at 15.6%, and Fly ash and GGBS at 5.9% and 5.1%, respectively. The best fit model i.e., XG-Boost model, was employed for SHAP analysis to assess the relative importance of contributing attributes and optimize input variables. The SHAP analysis unveiled the water-to-binder (W/B) ratio, superplasticizer, and gravel as the most significant factors influencing the CS of PAC. Furthermore, graphical user interface (GUI) have been developed for practical applications in predicting concrete strength. This simplifies the process and offers a valuable tool for leveraging the model's potential in the field of civil engineering. This comprehensive evaluation provides valuable insights to researchers and practitioners, empowering them to make informed choices in predicting PAC compressive ...
Forecasting the strength of preplaced aggregate concrete using interpretable machine learning approaches
Preplaced aggregate concrete (PAC) also known as two-stage concrete (TSC) is widely used in construction engineering for various applications. To produce PAC, a mixture of Portland cement, sand, and admixtures is injected into a mold subsequent to the deposition of coarse aggregate. This process complicates the prediction of compressive strength (CS), demanding thorough investigation. Consequently, the emphasis of this study is on enhancing the comprehension of PAC compressive strength using machine learning models. Thirteen models are evaluated with 261 data points and eleven input variables. The result depicts that xgboost demonstrates exceptional accuracy with a correlation coefficient of 0.9791 and a normalized coefficient of determination (R 2 ) of 0.9583. Moreover, Gradient boosting (GB) and Cat boost (CB) also perform well due to its robust performance. In addition, Adaboost, Voting regressor, and Random forest yield precise predictions with low mean absolute error (MAE) and root mean square error (RMSE) values. The sensitivity analysis (SA) reveals the significant impact of key input parameters on overall model sensitivity. Notably, gravel takes the lead with a substantial 44.7% contribution, followed by sand at 19.5%, cement at 15.6%, and Fly ash and GGBS at 5.9% and 5.1%, respectively. The best fit model i.e., XG-Boost model, was employed for SHAP analysis to assess the relative importance of contributing attributes and optimize input variables. The SHAP analysis unveiled the water-to-binder (W/B) ratio, superplasticizer, and gravel as the most significant factors influencing the CS of PAC. Furthermore, graphical user interface (GUI) have been developed for practical applications in predicting concrete strength. This simplifies the process and offers a valuable tool for leveraging the model's potential in the field of civil engineering. This comprehensive evaluation provides valuable insights to researchers and practitioners, empowering them to make informed choices in predicting PAC compressive ...
Forecasting the strength of preplaced aggregate concrete using interpretable machine learning approaches
Javed, Muhammad Faisal (author) / Fawad, Muhammad (author) / Lodhi, Rida (author) / Najeh, Taoufik (author) / Gamil, Yaser (author)
2024-04-10
Javed , M F , Fawad , M , Lodhi , R , Najeh , T & Gamil , Y 2024 , ' Forecasting the strength of preplaced aggregate concrete using interpretable machine learning approaches ' , Scientific Reports , vol. 14 , no. 1 , 8381 . https://doi.org/10.1038/s41598-024-57896-0
Article (Journal)
Electronic Resource
English
Response of Functionally Graded Preplaced Aggregate Fibrous Concrete with Superior Impact Strength
DOAJ | 2022
|Strength and durability of high-performance preplaced aggregate concrete for rapid pavement repair
Taylor & Francis Verlag | 2024
|