A platform for research: civil engineering, architecture and urbanism
Water Fluxes in Sandy Soils Across Poplar (Populus spp.) Short Rotation Coppices Plantations Under Contrasting Groundwater Accessibility
Sustainable water management practices for cultivation of bioenergy crops requires a sound understanding of how the different components of the soil-vegetation-atmosphere continuum influence water fluxes at stand scale. In addition, depth to groundwater can influence water accessibility to plants and could potentially determine tree water-use. This dissertation assesses how the meteorological factors and soil hydrological site parameters influence the magnitude of transpiration along a groundwater accessibility gradient in the floodplains of the Morava river, in Slovakia. Specifically, this study examines the influence of the soil texture, soil moisture, and matric potential and the meteorological variables in the transpiration of poplar short rotation coppices stands (Populus spp.) established on loamy sands textured soils, across three sites with high groundwater level, low groundwater level and fluctuating groundwater level. The study was conducted throughout 90 days during two monitoring periods, 2019 and 2021. The first analysis (Section 3.1) examines the meteorological and soil water conditions in combination with the sapflow and transpiration dynamics, between July 3 and September 30, 2019. This study found significant differences in tree and stand transpiration among the study sites. The site with higher groundwater accessibility and the site with fluctuating groundwater level presented larger transpiration rates mainly determined by optimal meteorological conditions, soil water availability and access to groundwater. Contrasting findings were obtained during the analysis of the monitoring period 2021, carried out between July 3 and September 30, 2021. In the monitoring period 2021 (Section 3.5), the sites with fluctuating groundwater level and low groundwater level indicated statistically higher transpiration rates than the site with higher accessibility to groundwater. This research found that the higher transpiration rates may be attributable to soil moisture and accessibility to groundwater. By ...
Water Fluxes in Sandy Soils Across Poplar (Populus spp.) Short Rotation Coppices Plantations Under Contrasting Groundwater Accessibility
Sustainable water management practices for cultivation of bioenergy crops requires a sound understanding of how the different components of the soil-vegetation-atmosphere continuum influence water fluxes at stand scale. In addition, depth to groundwater can influence water accessibility to plants and could potentially determine tree water-use. This dissertation assesses how the meteorological factors and soil hydrological site parameters influence the magnitude of transpiration along a groundwater accessibility gradient in the floodplains of the Morava river, in Slovakia. Specifically, this study examines the influence of the soil texture, soil moisture, and matric potential and the meteorological variables in the transpiration of poplar short rotation coppices stands (Populus spp.) established on loamy sands textured soils, across three sites with high groundwater level, low groundwater level and fluctuating groundwater level. The study was conducted throughout 90 days during two monitoring periods, 2019 and 2021. The first analysis (Section 3.1) examines the meteorological and soil water conditions in combination with the sapflow and transpiration dynamics, between July 3 and September 30, 2019. This study found significant differences in tree and stand transpiration among the study sites. The site with higher groundwater accessibility and the site with fluctuating groundwater level presented larger transpiration rates mainly determined by optimal meteorological conditions, soil water availability and access to groundwater. Contrasting findings were obtained during the analysis of the monitoring period 2021, carried out between July 3 and September 30, 2021. In the monitoring period 2021 (Section 3.5), the sites with fluctuating groundwater level and low groundwater level indicated statistically higher transpiration rates than the site with higher accessibility to groundwater. This research found that the higher transpiration rates may be attributable to soil moisture and accessibility to groundwater. By ...
Water Fluxes in Sandy Soils Across Poplar (Populus spp.) Short Rotation Coppices Plantations Under Contrasting Groundwater Accessibility
2023-12-19
Theses
Electronic Resource
English
Low-Investment Fully Mechanized Harvesting of Short-Rotation Poplar (populus spp.) Plantations
DOAJ | 2020
|Simulating Climate Change Impacts on Hybrid-Poplar and Black Locust Short Rotation Coppices
DOAJ | 2018
|Poplar Short Rotation Coppice Plantations under Mediterranean Conditions: The Case of Spain
DOAJ | 2020
|Economic Modelling of Poplar Short Rotation Coppice Plantations in Hungary
DOAJ | 2021
|