A platform for research: civil engineering, architecture and urbanism
House management system with real and virtual resources: Energy efficiency in residential microgrid
The reduction of the greenhouse gas emissions is a priority all around the globe. The investment on renewable energy sources is contributing for new opportunities in the context of the smart grids and microgrids. Recent advances are transforming the consumer into a prosumer, being able to adapt the consumption depending on its own generated power, and selling the surplus or buying the missing power. In this context, home management systems are emerging as an effective means to support the management of energy resources in the context of communication between functions/devices of a smart home. This paper presents a new agent-based home energy management approach, using ontologies to enable semantic communications between heterogeneous multi-agent entities. The main goal is to support an efficient energy management of end consumers in the context of microgrids, obtaining a scheduling for both real and virtual resources. A case study is presented, which simulates a 25-bus microgrid that includes a laboratorial controlled house (with real and simulated resources), which is managed by the proposed energy management system. ; This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641794 (project DREAM-GO) and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013.
House management system with real and virtual resources: Energy efficiency in residential microgrid
The reduction of the greenhouse gas emissions is a priority all around the globe. The investment on renewable energy sources is contributing for new opportunities in the context of the smart grids and microgrids. Recent advances are transforming the consumer into a prosumer, being able to adapt the consumption depending on its own generated power, and selling the surplus or buying the missing power. In this context, home management systems are emerging as an effective means to support the management of energy resources in the context of communication between functions/devices of a smart home. This paper presents a new agent-based home energy management approach, using ontologies to enable semantic communications between heterogeneous multi-agent entities. The main goal is to support an efficient energy management of end consumers in the context of microgrids, obtaining a scheduling for both real and virtual resources. A case study is presented, which simulates a 25-bus microgrid that includes a laboratorial controlled house (with real and simulated resources), which is managed by the proposed energy management system. ; This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641794 (project DREAM-GO) and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013.
House management system with real and virtual resources: Energy efficiency in residential microgrid
Gabriel Santos (author) / Filipe Femandes (author) / Tiago Pinto (author) / Marco Silva (author) / Omid Abrishambaf (author) / Hugo Morais (author) / Zita Vale (author)
2017-01-16
Conference paper
Electronic Resource
English
DDC:
690
Optimal energy management for a residential microgrid including a vehicle-to-grid system
BASE | 2013
|BASE | 2016
|Energy management under load shedding condition using concept of DC microgrid for residential load
BASE | 2018
|British Library Online Contents | 2014
|