A platform for research: civil engineering, architecture and urbanism
Spatial decomposition of ultrasonic echoes
The pulse-echo method is one of the most important in ultrasonic imaging. In many areas, including medical applications and nondestructive evaluation, it constitutes one of the fundamental principles for aquiring information about the examined object. An ultrasonic pulse is transmitted into a medium and the reflected pulse is recorded, often by the same transducer. In the area of 3-dimensional imaging, or surface profiling, the distance between the object and the transducer is estimated to be proportional to the time-of-flight (TOF) of the pulse. If the transducer is then moved in a plane parallell to the object, a surface profile can be obtained. Usually some sort of correlation between echoes is performed to estimate their relative difference in TOF. However, this assumes that the shape of the echoes are the same. This is not the case as the shape is dependent on the surface in the neighbourhood of the transducer's symmetry axis and this shape will vary as the transducer is moved across the surface. The change in signal shape will reduce the accuracy of the TOF estimation. A simple example is when the surface has a step. The resulting echo consists of the superposition of two echoes; one from the "top" and one from the "bottom". The TOF estimate will then be almost arbitrary. Another difficulty with pulse-echo imaging is the lateral resolution. The ultrasonic beam is not infinitesimally thin but has a non-neglectable spatial extent, even for focused transducers. This means that two point reflectors separated laterally with only a small distance can not be resolved by ultrasound. The spatial decompostion of the ultrasonic echoes suggested in this licentiate thesis can be used to extract information from the pulse deformation and to reduce the lateral resolution in the following way: * In surface profiling, the surface is modelled as piecewise plane, i.e. the reflected pulse stems from a local plane and perpendicular object. If we instead model the part of the surface that reflects the ultrasonic pulse as a ...
Spatial decomposition of ultrasonic echoes
The pulse-echo method is one of the most important in ultrasonic imaging. In many areas, including medical applications and nondestructive evaluation, it constitutes one of the fundamental principles for aquiring information about the examined object. An ultrasonic pulse is transmitted into a medium and the reflected pulse is recorded, often by the same transducer. In the area of 3-dimensional imaging, or surface profiling, the distance between the object and the transducer is estimated to be proportional to the time-of-flight (TOF) of the pulse. If the transducer is then moved in a plane parallell to the object, a surface profile can be obtained. Usually some sort of correlation between echoes is performed to estimate their relative difference in TOF. However, this assumes that the shape of the echoes are the same. This is not the case as the shape is dependent on the surface in the neighbourhood of the transducer's symmetry axis and this shape will vary as the transducer is moved across the surface. The change in signal shape will reduce the accuracy of the TOF estimation. A simple example is when the surface has a step. The resulting echo consists of the superposition of two echoes; one from the "top" and one from the "bottom". The TOF estimate will then be almost arbitrary. Another difficulty with pulse-echo imaging is the lateral resolution. The ultrasonic beam is not infinitesimally thin but has a non-neglectable spatial extent, even for focused transducers. This means that two point reflectors separated laterally with only a small distance can not be resolved by ultrasound. The spatial decompostion of the ultrasonic echoes suggested in this licentiate thesis can be used to extract information from the pulse deformation and to reduce the lateral resolution in the following way: * In surface profiling, the surface is modelled as piecewise plane, i.e. the reflected pulse stems from a local plane and perpendicular object. If we instead model the part of the surface that reflects the ultrasonic pulse as a ...
Spatial decomposition of ultrasonic echoes
Sandell, Magnus (author)
1994-01-01
1994:05
Theses
Electronic Resource
English
Ultrasonic discrimination and modelling for crack-tip echoes
British Library Online Contents | 2011
|Identification of highly oscillatory ultrasonic NDE echoes through evolutionary algorithm
British Library Online Contents | 2008
|British Library Online Contents | 2011
|British Library Online Contents | 1997
|Online Contents | 2005
|