A platform for research: civil engineering, architecture and urbanism
A robust four-node quadrilateral element for laminated composite and sandwich plates based on Refined Zigzag Theory
The paper presents a locking-free four-node element for laminated composite and sandwich plates based on Refined Zigzag Theory (RZT). Initially, two RZT-based plate elements are derived using four-node and eight-node configurations, achieved by way of standard C0 isoparametric shape functions. In addition, with a view on improving the modelling of extremely thin plates, an anisoparametric four-node element is developed in which the transverse deflection variable is interpolated using quadratic polynomial shape functions, whereas the remaining kinematic variables are bilinear. A straightforward transverse-shear edge-constraint procedure gives rise to a four-node anisoparametric element. A further enhancement is achieved using an Element Shear Correction (ESC) factor that is derived from a strain-energy matching procedure. The resulting four-node element (ZQ4c) uses full Gauss quadrature, consistent load vector, and mass matrix. Furthermore, the ZQ4c stiffness matrix has no spurious zero-energy modes, and the element is extremely robust when modelling ultra-thin plates. Several numerical studies are carried out to demonstrate the predictive capabilities of the four elements examined in this investigation. It is concluded ZQ4c is a highly accurate element over a wide range of material systems and span-to-thickness ratios, and is the best performing element of the four elements examined in this study.
A robust four-node quadrilateral element for laminated composite and sandwich plates based on Refined Zigzag Theory
The paper presents a locking-free four-node element for laminated composite and sandwich plates based on Refined Zigzag Theory (RZT). Initially, two RZT-based plate elements are derived using four-node and eight-node configurations, achieved by way of standard C0 isoparametric shape functions. In addition, with a view on improving the modelling of extremely thin plates, an anisoparametric four-node element is developed in which the transverse deflection variable is interpolated using quadratic polynomial shape functions, whereas the remaining kinematic variables are bilinear. A straightforward transverse-shear edge-constraint procedure gives rise to a four-node anisoparametric element. A further enhancement is achieved using an Element Shear Correction (ESC) factor that is derived from a strain-energy matching procedure. The resulting four-node element (ZQ4c) uses full Gauss quadrature, consistent load vector, and mass matrix. Furthermore, the ZQ4c stiffness matrix has no spurious zero-energy modes, and the element is extremely robust when modelling ultra-thin plates. Several numerical studies are carried out to demonstrate the predictive capabilities of the four elements examined in this investigation. It is concluded ZQ4c is a highly accurate element over a wide range of material systems and span-to-thickness ratios, and is the best performing element of the four elements examined in this study.
A robust four-node quadrilateral element for laminated composite and sandwich plates based on Refined Zigzag Theory
Sorrenti, M. (author) / Di Sciuva, M. (author) / Tessler, A. (author) / Sorrenti, M. / Di Sciuva, M. / Tessler, A.
2020-01-01
Article (Journal)
Electronic Resource
English
DDC:
690
British Library Online Contents | 2015
|British Library Online Contents | 2015
|British Library Online Contents | 2008
|BASE | 2013
|British Library Online Contents | 2013
|