A platform for research: civil engineering, architecture and urbanism
A nonlinear static procedure for the tsunami design of a reinforced concrete building to the ASCE7 Standard
New ASCE 7-16 Chapter 6 offer a comprehensive and practical methodology for the design of structures for tsunami loads and effects. While they provide prescriptive tsunami loading and design requirements, they also allow for the use of performance-based analysis tools. However, no guidance is provided as to how the performance-based analysis should be performed. This paper presents an improved nonlinear static pushover procedure for the assessment of the nonlinear capacity of structures to tsunami, within the framework of the ASCE 7-16 provisions. For this purpose, a prototypical reinforced concrete multi-storey building exposed to high tsunami hazard in the US Northwest Pacific coast is assessed. This is a building with sufficient height to provide last-resort refuge for people having insufficient time to evacuate outside the inundation zone. Two different tsunami load discretisation methods are applied to investigate the structural capacity under tsunami systemic and component loading, respectively. The results of the nonlinear static pushover analyses show that the structural system has sufficient lateral strength to resist ASCE 7-16 prescribed tsunami loads. However, when component-based loading is considered, the seaward ground storey columns are observed to fail in shear, precipitating structural failure. This is in agreement with the ASCE 7-16 simplified systemic acceptance criteria, i.e. that the structure is unsafe for use as a refuge, and that it would require significant strengthening. However, the use of the VDPO provides information of what needs to be strengthened in order to improve the tsunami performance of the structure.
A nonlinear static procedure for the tsunami design of a reinforced concrete building to the ASCE7 Standard
New ASCE 7-16 Chapter 6 offer a comprehensive and practical methodology for the design of structures for tsunami loads and effects. While they provide prescriptive tsunami loading and design requirements, they also allow for the use of performance-based analysis tools. However, no guidance is provided as to how the performance-based analysis should be performed. This paper presents an improved nonlinear static pushover procedure for the assessment of the nonlinear capacity of structures to tsunami, within the framework of the ASCE 7-16 provisions. For this purpose, a prototypical reinforced concrete multi-storey building exposed to high tsunami hazard in the US Northwest Pacific coast is assessed. This is a building with sufficient height to provide last-resort refuge for people having insufficient time to evacuate outside the inundation zone. Two different tsunami load discretisation methods are applied to investigate the structural capacity under tsunami systemic and component loading, respectively. The results of the nonlinear static pushover analyses show that the structural system has sufficient lateral strength to resist ASCE 7-16 prescribed tsunami loads. However, when component-based loading is considered, the seaward ground storey columns are observed to fail in shear, precipitating structural failure. This is in agreement with the ASCE 7-16 simplified systemic acceptance criteria, i.e. that the structure is unsafe for use as a refuge, and that it would require significant strengthening. However, the use of the VDPO provides information of what needs to be strengthened in order to improve the tsunami performance of the structure.
A nonlinear static procedure for the tsunami design of a reinforced concrete building to the ASCE7 Standard
Baiguera, M (author) / Rossetto, T (author) / Robertson, I (author) / Petrone, C (author) / Rossetto, T
2019-09-10
In: Rossetto, T, (ed.) Proceedings of the SECED 2019 Conference. Society of Earthquake and Civil Engineering Dynamics (SECED): London, UK. (2019)
Paper
Electronic Resource
English
TIBKAT | 2019
|Towards a tsunami nonlinear static analysis procedure for the ASCE 7 standard
BASE | 2019
|British Library Conference Proceedings | 2008
|Proposed standard building regulations for reinforced concrete
Engineering Index Backfile | 1929