A platform for research: civil engineering, architecture and urbanism
Data-driven visual quality estimation using machine learning
Heutzutage werden viele visuelle Inhalte erstellt und sind zugänglich, was auf Verbesserungen der Technologie wie Smartphones und das Internet zurückzuführen ist. Es ist daher notwendig, die von den Nutzern wahrgenommene Qualität zu bewerten, um das Erlebnis weiter zu verbessern. Allerdings sind nur wenige der aktuellen Qualitätsmodelle speziell für höhere Auflösungen konzipiert, sagen mehr als nur den Mean Opinion Score vorher oder nutzen maschinelles Lernen. Ein Ziel dieser Arbeit ist es, solche maschinellen Modelle für höhere Auflösungen mit verschiedenen Datensätzen zu trainieren und zu evaluieren. Als Erstes wird eine objektive Analyse der Bildqualität bei höheren Auflösungen durchgeführt. Die Bilder wurden mit Video-Encodern komprimiert, hierbei weist AV1 die beste Qualität und Kompression auf. Anschließend werden die Ergebnisse eines Crowd-Sourcing-Tests mit einem Labortest bezüglich Bildqualität verglichen. Weiterhin werden auf Deep Learning basierende Modelle für die Vorhersage von Bild- und Videoqualität beschrieben. Das auf Deep Learning basierende Modell ist aufgrund der benötigten Ressourcen für die Vorhersage der Videoqualität in der Praxis nicht anwendbar. Aus diesem Grund werden pixelbasierte Videoqualitätsmodelle vorgeschlagen und ausgewertet, die aussagekräftige Features verwenden, welche Bild- und Bewegungsaspekte abdecken. Diese Modelle können zur Vorhersage von Mean Opinion Scores für Videos oder sogar für anderer Werte im Zusammenhang mit der Videoqualität verwendet werden, wie z.B. einer Bewertungsverteilung. Die vorgestellte Modellarchitektur kann auf andere Videoprobleme angewandt werden, wie z.B. Videoklassifizierung, Vorhersage der Qualität von Spielevideos, Klassifikation von Spielegenres oder der Klassifikation von Kodierungsparametern. Ein wichtiger Aspekt ist auch die Verarbeitungszeit solcher Modelle. Daher wird ein allgemeiner Ansatz zur Beschleunigung von State-of-the-Art-Videoqualitätsmodellen vorgestellt, der zeigt, dass ein erheblicher Teil der Verarbeitungszeit eingespart ...
Data-driven visual quality estimation using machine learning
Heutzutage werden viele visuelle Inhalte erstellt und sind zugänglich, was auf Verbesserungen der Technologie wie Smartphones und das Internet zurückzuführen ist. Es ist daher notwendig, die von den Nutzern wahrgenommene Qualität zu bewerten, um das Erlebnis weiter zu verbessern. Allerdings sind nur wenige der aktuellen Qualitätsmodelle speziell für höhere Auflösungen konzipiert, sagen mehr als nur den Mean Opinion Score vorher oder nutzen maschinelles Lernen. Ein Ziel dieser Arbeit ist es, solche maschinellen Modelle für höhere Auflösungen mit verschiedenen Datensätzen zu trainieren und zu evaluieren. Als Erstes wird eine objektive Analyse der Bildqualität bei höheren Auflösungen durchgeführt. Die Bilder wurden mit Video-Encodern komprimiert, hierbei weist AV1 die beste Qualität und Kompression auf. Anschließend werden die Ergebnisse eines Crowd-Sourcing-Tests mit einem Labortest bezüglich Bildqualität verglichen. Weiterhin werden auf Deep Learning basierende Modelle für die Vorhersage von Bild- und Videoqualität beschrieben. Das auf Deep Learning basierende Modell ist aufgrund der benötigten Ressourcen für die Vorhersage der Videoqualität in der Praxis nicht anwendbar. Aus diesem Grund werden pixelbasierte Videoqualitätsmodelle vorgeschlagen und ausgewertet, die aussagekräftige Features verwenden, welche Bild- und Bewegungsaspekte abdecken. Diese Modelle können zur Vorhersage von Mean Opinion Scores für Videos oder sogar für anderer Werte im Zusammenhang mit der Videoqualität verwendet werden, wie z.B. einer Bewertungsverteilung. Die vorgestellte Modellarchitektur kann auf andere Videoprobleme angewandt werden, wie z.B. Videoklassifizierung, Vorhersage der Qualität von Spielevideos, Klassifikation von Spielegenres oder der Klassifikation von Kodierungsparametern. Ein wichtiger Aspekt ist auch die Verarbeitungszeit solcher Modelle. Daher wird ein allgemeiner Ansatz zur Beschleunigung von State-of-the-Art-Videoqualitätsmodellen vorgestellt, der zeigt, dass ein erheblicher Teil der Verarbeitungszeit eingespart ...
Data-driven visual quality estimation using machine learning
Göring, Steve (author) / Raake, Alexander / Le Callet, Patrick / Skorin-Kapov, Lea
2022-07-05
Theses
Electronic Resource
English
Contraction scour estimation using data-driven methods
Taylor & Francis Verlag | 2015
|