A platform for research: civil engineering, architecture and urbanism
Improving decision making for incentivised and weather-sensitive projects
The field of project management has originated from the domain of operational research, which focuses on the mathematical optimization of operational problems. However, in recent decades an increasingly broad perspective has been applied to the field of project management. As such, project management has spawned a number of very active sub- domains, which focus not solely on the scheduling of the project’s baseline, but also on the analysis of risk, as well as the controlling of project execution. This dissertation focuses on two areas where existing literature is still lacking. The first area is the use of incentivised contractual agreements between the owner of a project, and the contractor who is hired to execute the project. Whereas this area has received growing attention in recent years, the majority of studies remained strongly descriptive. Hence, the aim of the first part of this dissertation is to develop a more prescriptive approach from both the owner’s and the contractor’s perspective. The second part of this dissertation investigates the use of dedicated weather models to improve operational performance of weather-sensitive projects. During recent decades, significant effort has been made to improve the quality of weather simulation models. Moreover, the amount of available weather data has been steadily increasing. This opens up a lot of new possibilities for using more precise weather models in order to support operational decision making. In spite of this, the number of applications of these weather models in operational research has remained rather limited. As such, the aim of the second part of this dissertation is to leverage these weather models to improve the scheduling of offshore construction projects, as well as preventive maintenance of offshore wind turbines.
Improving decision making for incentivised and weather-sensitive projects
The field of project management has originated from the domain of operational research, which focuses on the mathematical optimization of operational problems. However, in recent decades an increasingly broad perspective has been applied to the field of project management. As such, project management has spawned a number of very active sub- domains, which focus not solely on the scheduling of the project’s baseline, but also on the analysis of risk, as well as the controlling of project execution. This dissertation focuses on two areas where existing literature is still lacking. The first area is the use of incentivised contractual agreements between the owner of a project, and the contractor who is hired to execute the project. Whereas this area has received growing attention in recent years, the majority of studies remained strongly descriptive. Hence, the aim of the first part of this dissertation is to develop a more prescriptive approach from both the owner’s and the contractor’s perspective. The second part of this dissertation investigates the use of dedicated weather models to improve operational performance of weather-sensitive projects. During recent decades, significant effort has been made to improve the quality of weather simulation models. Moreover, the amount of available weather data has been steadily increasing. This opens up a lot of new possibilities for using more precise weather models in order to support operational decision making. In spite of this, the number of applications of these weather models in operational research has remained rather limited. As such, the aim of the second part of this dissertation is to leverage these weather models to improve the scheduling of offshore construction projects, as well as preventive maintenance of offshore wind turbines.
Improving decision making for incentivised and weather-sensitive projects
Kerkhove, Louis-Philippe (author) / Vanhoucke, Mario
2016-01-01
Theses
Electronic Resource
English
DDC:
690
Incentivised Travel and Mobile Application as Multiple Policy Intervention for Mode Shift
Springer Verlag | 2020
|Improving decision-making for major urban rail projects
British Library Online Contents | 2011
|Improving decision-making for major urban rail projects
Online Contents | 2011
|Taylor & Francis Verlag | 2019
|