A platform for research: civil engineering, architecture and urbanism
Time Synchronization in Multimodal Wireless Cyber-Physical Systems: A Wearable Biopotential Acquisition and Collaborative Brain-Computer Interface Paradigm
Die Forschung zu Brain-Computer Interface (BCI) hat in den letzten drei Jahren riesige Fortschritte gemacht, nicht nur im Bereich der menschlich gesteuerten Roboter, der Steuerung von Prothesen, des Interpretierens von Wörtern, der Kommunikation in einer Virtual Reality Umgebung oder der Computerspiele, sondern auch in der kognitiven Neurologie. Patienten, die unter enormen motorischen Dysfunktionen leiden (letztes Stadium Amyotrophe Lateralsklerose) könnten solch ein BCI System als alternatives Medium zur Kommunikation durch die eigene Gehirnaktivität nutzen. Neuste Studien zeigen, dass die Verwendung dieses BCI Systems in einem Gruppenexperiment helfen kann die menschliche Entscheidungstreffung deutlich zu verbessern. Dies ist ein neues Feld des BCI, nämlich das Collaborative BCI. Einerseits erfordert die Durchführung solch eines Gruppenexperiments drahtlose Hochleistungs-EEG Systeme, basierend auf BCI, welches kostengünstig und tragbar sein sollte und Langzeit-Monitoring hochwertiger EEG Daten sicherstellt. Andererseits ist es erforderlich, eine Zeitsynchronisierung zwischen den einzelnen BCI Systemen einzusetzen, damit diese für ein Gruppenexperiment zum Einsatz kommen können. Diese Herausforderungen setzten die Grundlage dieser Doktorarbeit. In dieser Arbeit wurde ein neuartiges, nicht invasives, modulares, biopotentiales Messsystem entwickelt: Dieses kann Breitband (0.5 Hz–150 Hz) Biopotentiale ableiten, bestehend aus Elektromyographie (EMG), Elektrokardiografie (EKG), Elektroencephalografie (EEG), wurde insgesamt bezeichnet als ExG bzw. das Messsystem als ExG-System benannt. Die Modularität des ExG-Systems erlaubt 8 bis hin zu 256 Kanäle zu konfigurieren, je nach Anforderung, ob in einen textilen Schlauch eingekapselt zur Erfassung von EMG Signalen, in eine textilen Weste zur Erfassung von ECG Signalen oder in eine textilen Kappe zur Erfassung von EEG Signalen. Der Einbau des ExG-Systems in eine Kappe wurde ebenfalls im Rahmen der Arbeit entwickelt. Der letzte Schritt des ExG-Systems zeigt niedriges ...
Time Synchronization in Multimodal Wireless Cyber-Physical Systems: A Wearable Biopotential Acquisition and Collaborative Brain-Computer Interface Paradigm
Die Forschung zu Brain-Computer Interface (BCI) hat in den letzten drei Jahren riesige Fortschritte gemacht, nicht nur im Bereich der menschlich gesteuerten Roboter, der Steuerung von Prothesen, des Interpretierens von Wörtern, der Kommunikation in einer Virtual Reality Umgebung oder der Computerspiele, sondern auch in der kognitiven Neurologie. Patienten, die unter enormen motorischen Dysfunktionen leiden (letztes Stadium Amyotrophe Lateralsklerose) könnten solch ein BCI System als alternatives Medium zur Kommunikation durch die eigene Gehirnaktivität nutzen. Neuste Studien zeigen, dass die Verwendung dieses BCI Systems in einem Gruppenexperiment helfen kann die menschliche Entscheidungstreffung deutlich zu verbessern. Dies ist ein neues Feld des BCI, nämlich das Collaborative BCI. Einerseits erfordert die Durchführung solch eines Gruppenexperiments drahtlose Hochleistungs-EEG Systeme, basierend auf BCI, welches kostengünstig und tragbar sein sollte und Langzeit-Monitoring hochwertiger EEG Daten sicherstellt. Andererseits ist es erforderlich, eine Zeitsynchronisierung zwischen den einzelnen BCI Systemen einzusetzen, damit diese für ein Gruppenexperiment zum Einsatz kommen können. Diese Herausforderungen setzten die Grundlage dieser Doktorarbeit. In dieser Arbeit wurde ein neuartiges, nicht invasives, modulares, biopotentiales Messsystem entwickelt: Dieses kann Breitband (0.5 Hz–150 Hz) Biopotentiale ableiten, bestehend aus Elektromyographie (EMG), Elektrokardiografie (EKG), Elektroencephalografie (EEG), wurde insgesamt bezeichnet als ExG bzw. das Messsystem als ExG-System benannt. Die Modularität des ExG-Systems erlaubt 8 bis hin zu 256 Kanäle zu konfigurieren, je nach Anforderung, ob in einen textilen Schlauch eingekapselt zur Erfassung von EMG Signalen, in eine textilen Weste zur Erfassung von ECG Signalen oder in eine textilen Kappe zur Erfassung von EEG Signalen. Der Einbau des ExG-Systems in eine Kappe wurde ebenfalls im Rahmen der Arbeit entwickelt. Der letzte Schritt des ExG-Systems zeigt niedriges ...
Time Synchronization in Multimodal Wireless Cyber-Physical Systems: A Wearable Biopotential Acquisition and Collaborative Brain-Computer Interface Paradigm
Ghoshdastider, Unmesh (author) / Kraft, Michael
2016-02-23
Theses
Electronic Resource
English
Meso Hybridized Silk Fibroin Watchband for Wearable Biopotential Sensing and AI Gesture Signaling
Wiley | 2025
|Meso Hybridized Silk Fibroin Watchband for Wearable Biopotential Sensing and AI Gesture Signaling
Wiley | 2025
|Silicon-Based Microneedle Array Electrodes for Biopotential Measurement
British Library Online Contents | 2011
|Nanocomposite Ag:TiN thin films for dry biopotential electrodes
British Library Online Contents | 2013
|