A platform for research: civil engineering, architecture and urbanism
Developing a Data-driven School Building Stock Energy and Indoor Environmental Quality Modelling Method
The school building sector has a pivotal role to play in the transition to a low carbon UK economy. School buildings are responsible for 15% of the country’s public sector carbon emissions, with space heating currently making up the largest proportion of energy use and associated costs in schools. Children spend a large part of their waking life in school buildings. There is substantial evidence that poor indoor air quality and thermal discomfort can have detrimental impacts on the performance, wellbeing and health of schoolchildren and school staff. Maintaining high indoor environmental quality whilst reducing energy demand and carbon emissions in schools is challenging due to the unique operational characteristics of school environments, e.g. high and intermittent occupancy densities or changes in occupancy patterns throughout the year. Furthermore, existing data show that 81% of the school building stock in England was constructed before 1976. Challenges facing the ageing school building stock may be exacerbated in the context of ongoing and future climate change. In recent decades, building stock modelling has been widely used to quantify and evaluate the current and future energy and indoor environmental quality performance of large numbers of buildings at the neighbourhood, city, regional or national level. Building stock models commonly use building archetypes, which aim to represent the diversity of building stocks through frequently occurring building typologies. The aim of this paper is to introduce the Data dRiven Engine for Archetype Models of Schools (DREAMS), a novel, data-driven, archetype-based school building stock modelling framework. DREAMS enables the detailed representation of the school building stock in England through the statistical analysis of two large scale and highly detailed databases provided by the UK Government: (i) the Property Data Survey Programme (PDSP) from the Department for Education (DfE), and (ii) Display Energy Certificates (DEC). In this paper, the development of 168 ...
Developing a Data-driven School Building Stock Energy and Indoor Environmental Quality Modelling Method
The school building sector has a pivotal role to play in the transition to a low carbon UK economy. School buildings are responsible for 15% of the country’s public sector carbon emissions, with space heating currently making up the largest proportion of energy use and associated costs in schools. Children spend a large part of their waking life in school buildings. There is substantial evidence that poor indoor air quality and thermal discomfort can have detrimental impacts on the performance, wellbeing and health of schoolchildren and school staff. Maintaining high indoor environmental quality whilst reducing energy demand and carbon emissions in schools is challenging due to the unique operational characteristics of school environments, e.g. high and intermittent occupancy densities or changes in occupancy patterns throughout the year. Furthermore, existing data show that 81% of the school building stock in England was constructed before 1976. Challenges facing the ageing school building stock may be exacerbated in the context of ongoing and future climate change. In recent decades, building stock modelling has been widely used to quantify and evaluate the current and future energy and indoor environmental quality performance of large numbers of buildings at the neighbourhood, city, regional or national level. Building stock models commonly use building archetypes, which aim to represent the diversity of building stocks through frequently occurring building typologies. The aim of this paper is to introduce the Data dRiven Engine for Archetype Models of Schools (DREAMS), a novel, data-driven, archetype-based school building stock modelling framework. DREAMS enables the detailed representation of the school building stock in England through the statistical analysis of two large scale and highly detailed databases provided by the UK Government: (i) the Property Data Survey Programme (PDSP) from the Department for Education (DfE), and (ii) Display Energy Certificates (DEC). In this paper, the development of 168 ...
Developing a Data-driven School Building Stock Energy and Indoor Environmental Quality Modelling Method
Schwartz, Y (author) / Godoy-Shimizu, D (author) / Korolija, I (author) / Dong, J (author) / Hong, SM (author) / Mavrogianni, A (author) / Mumovic, D (author)
2021-10-15
Energy and Buildings , 249 , Article 111249. (2021)
Article (Journal)
Electronic Resource
English
DDC:
690
Portuguese building stock indoor environmental quality “in-situ” assessment
BASE | 2010
|SAGE Publications | 2020
|