A platform for research: civil engineering, architecture and urbanism
Soil-Structure Interaction For Nonslender, Large-Diameter Offshore Monopiles
Udviklingen af nye teknologier samt forbedringer af eksisterende teknologier inden- for vedvarende energi bliver støttet af indflydelsesrige politikere, økonomisk stærke virksomheder og fonde. Denne politiske og industrielle støtte er især udbredt i Nordeuropa. Offshore vindenergi er en bæredygtig energiform og en i høj grad uudnyttet energiressource. Produktionspriserne for nye havvindmøller har efterhånden nået et niveau, hvor offshore vindenergi er konkurrencedygtig i forhold til andre former for vedvarende energi. Optimering af teknologien inden for offshore vindenergi er derfor særdeles vigtig, for at bryde afhængigheden af fossile brændstoffer samt for at møde fremtidens energi- og klimamål. Omkostningerne forbundet med funderingen af havvindmøller udgør typisk 20-30 % af de samlede omkostninger for havvindmøller. Dermed kan forbedringer af de nuværende designmetoder for funderingen af havvindmøller være med til at øge konkurrenceevnen for offshore vindenergi væsentligt. Den mest anvendte funderingstype for offshore vindmøller er monopæle. Det overordnede mål med denne afhandling er at optimere de nuværende designmetoder for monopæle fundamenter, således at konkurenceevnen for offshore vindmøller kan forbedres. Derfor er interaktionen mellem jord og pæl blevet undersøgt for stive offshore pæle. ; Strong political and industrial forces, especially in Northern Europe, support the development of new technologies as well as improvements of existing technologies within the field of renewable energy. Offshore wind power is a domestic, sustainable and largely untapped energy resource. Today, the modern offshore wind turbine offers competitive production prices compared to other sources of renewable energy. Therefore, it is a key technology in breaking the dependence on fossil fuels and in achieving the energy and climate goals of the future. For offshore wind turbines, the costs of foundation typically constitutes 20-30 % of the total costs. Hence, improved methods for the design of foundations for offshore wind turbines can increase the competitiveness of offshore wind energy significantly. The monopile foundation concept has been employed as the foundation for the majority of the currently installed offshore wind turbines. The overall aim of the present thesis is to enable low-cost and low-risk foundations to be designed for future offshore wind farms. Therefore, the soil-pile interaction for non-slender, large-diameter offshore piles has been investigated.
Soil-Structure Interaction For Nonslender, Large-Diameter Offshore Monopiles
Udviklingen af nye teknologier samt forbedringer af eksisterende teknologier inden- for vedvarende energi bliver støttet af indflydelsesrige politikere, økonomisk stærke virksomheder og fonde. Denne politiske og industrielle støtte er især udbredt i Nordeuropa. Offshore vindenergi er en bæredygtig energiform og en i høj grad uudnyttet energiressource. Produktionspriserne for nye havvindmøller har efterhånden nået et niveau, hvor offshore vindenergi er konkurrencedygtig i forhold til andre former for vedvarende energi. Optimering af teknologien inden for offshore vindenergi er derfor særdeles vigtig, for at bryde afhængigheden af fossile brændstoffer samt for at møde fremtidens energi- og klimamål. Omkostningerne forbundet med funderingen af havvindmøller udgør typisk 20-30 % af de samlede omkostninger for havvindmøller. Dermed kan forbedringer af de nuværende designmetoder for funderingen af havvindmøller være med til at øge konkurrenceevnen for offshore vindenergi væsentligt. Den mest anvendte funderingstype for offshore vindmøller er monopæle. Det overordnede mål med denne afhandling er at optimere de nuværende designmetoder for monopæle fundamenter, således at konkurenceevnen for offshore vindmøller kan forbedres. Derfor er interaktionen mellem jord og pæl blevet undersøgt for stive offshore pæle. ; Strong political and industrial forces, especially in Northern Europe, support the development of new technologies as well as improvements of existing technologies within the field of renewable energy. Offshore wind power is a domestic, sustainable and largely untapped energy resource. Today, the modern offshore wind turbine offers competitive production prices compared to other sources of renewable energy. Therefore, it is a key technology in breaking the dependence on fossil fuels and in achieving the energy and climate goals of the future. For offshore wind turbines, the costs of foundation typically constitutes 20-30 % of the total costs. Hence, improved methods for the design of foundations for offshore wind turbines can increase the competitiveness of offshore wind energy significantly. The monopile foundation concept has been employed as the foundation for the majority of the currently installed offshore wind turbines. The overall aim of the present thesis is to enable low-cost and low-risk foundations to be designed for future offshore wind farms. Therefore, the soil-pile interaction for non-slender, large-diameter offshore piles has been investigated.
Soil-Structure Interaction For Nonslender, Large-Diameter Offshore Monopiles
Sørensen, Søren Peder Hyldal (author)
2012-01-01
Sørensen , S P H 2012 , Soil-Structure Interaction For Nonslender, Large-Diameter Offshore Monopiles . DCE Thesis , no. 37 , vol. 1 + 2 , Department of Civil Engineering, Aalborg University , Aalborg .
Book
Electronic Resource
English
DDC:
710
Numerical Simulations of Wave–Structure–Soil Interaction of Offshore Monopiles
Online Contents | 2017
|Numerical Simulations of Wave–Structure–Soil Interaction of Offshore Monopiles
Online Contents | 2016
|Finite-Element-Modelling of Large Diameter Monopiles for Offshore Wind Energy Converters
British Library Conference Proceedings | 2006
|