A platform for research: civil engineering, architecture and urbanism
Energy saving with personalized ventilation and cooling fan
Indoor environmental quality substantially influences health, comfort and productivity. The cost related to a poor indoor environment is high. Numerous field studies have documented substantial rates of dissatisfaction with the indoor environment in many buildings, therefore an increment of the actual indoor environmental quality is necessary. Global warming of the climate system is now unequivocal and it has had a discernible influence on many physical and biological systems, therefore, it is needed to reduce the greenhouse gases emission. On this challenge, an important role is played by the building sector. Technological solutions able to improve the indoor environment and to reduce the energy consumption simultaneously should be developed. In warm environments elevated air movement is a widely used strategy for cooling of occupants. Increasing the air movement let the opportunity to set the maximum permissible room temperatures to higher values. According to many authors this solution leads to substantial energy savings. In the present international indoor climate standards a relationship is present between the air speed and the allowed increment in operative temperature. The air movement increase can be produced by several devices as cooling fans (ceiling, floor standing, tower and table fans) or Personalized Ventilation (PV) systems. The cooling fans ability to cool the human body is limited because they operate under isothermal conditions. Cooling fans may save energy but they do not improve the indoor environmental quality. Appearance, power consumption and price are the main parameters considered when purchasing cooling fans while their cooling capacity and efficiency of energy use are unknown. Comparison of the performance of cooling fans regarding cooling capacity and energy consumption is important for their application in practice. The personalized ventilation is an individually controlled micro-environmental system that provides clean air close to occupants. Numerous studies show that PV in ...
Energy saving with personalized ventilation and cooling fan
Indoor environmental quality substantially influences health, comfort and productivity. The cost related to a poor indoor environment is high. Numerous field studies have documented substantial rates of dissatisfaction with the indoor environment in many buildings, therefore an increment of the actual indoor environmental quality is necessary. Global warming of the climate system is now unequivocal and it has had a discernible influence on many physical and biological systems, therefore, it is needed to reduce the greenhouse gases emission. On this challenge, an important role is played by the building sector. Technological solutions able to improve the indoor environment and to reduce the energy consumption simultaneously should be developed. In warm environments elevated air movement is a widely used strategy for cooling of occupants. Increasing the air movement let the opportunity to set the maximum permissible room temperatures to higher values. According to many authors this solution leads to substantial energy savings. In the present international indoor climate standards a relationship is present between the air speed and the allowed increment in operative temperature. The air movement increase can be produced by several devices as cooling fans (ceiling, floor standing, tower and table fans) or Personalized Ventilation (PV) systems. The cooling fans ability to cool the human body is limited because they operate under isothermal conditions. Cooling fans may save energy but they do not improve the indoor environmental quality. Appearance, power consumption and price are the main parameters considered when purchasing cooling fans while their cooling capacity and efficiency of energy use are unknown. Comparison of the performance of cooling fans regarding cooling capacity and energy consumption is important for their application in practice. The personalized ventilation is an individually controlled micro-environmental system that provides clean air close to occupants. Numerous studies show that PV in ...
Energy saving with personalized ventilation and cooling fan
Schiavon, Stefano (author) / Giorgio, Rostagni / Schiavon, Stefano
2008-12-31
Theses
Electronic Resource
English
Local cooling , Personalized ventilation , EN 15251 , Ventilation , Personal environmental control system , Settore ING-IND/10 - Fisica Tecnica Industriale , Cooling fan efficiency , ASHRAE 55 , Indoor air movement , Fan , Energy analysi , Energy simulation , Settore ING-IND/11 - Fisica Tecnica Ambientale , Energy saving , Supply air temperature control
DDC:
690
Energy-saving strategies with personalized ventilation in cold climates
Online Contents | 2009
|Energy-saving strategies with personalized ventilation in cold climates
Online Contents | 2009
|Energy-saving strategies with personalized ventilation in cold climates
Elsevier | 2008
|Online Contents | 2004
|British Library Conference Proceedings | 2004
|