A platform for research: civil engineering, architecture and urbanism
Deep learning for building stock classification for seismic risk analysis
Nas últimas décadas, a maioria dos esforços para catalogar e caracterizar o ambiente construído para a avaliação de riscos múltiplos têm-se concentrado na exploração de dados censitários habitacionais, conjuntos de dados cadastrais e pesquisas locais. A primeira abordagem é atualizada apenas a cada 10 anos e não fornece informações sobre a localizações dos edifícios. O segundo tipo de dados está disponível apenas para algumas áreas urbanos, e a terceira abordagem requer levantamentos realizados por profissionais com formação em engenharia, o que é proibitivo em termos de custo para estudos de risco em larga escala. Portanto, é evidente que os métodos para caracterizar o ambiente construído para a análise de riscos em larga escala, estão atualmente ausentes, o que dificulta a avaliação do impacto de fenómenos naturais para fins de gestão de riscos. Alguns esforços recentes têm demonstrado como algoritmos de aprendizagem-máquina podem ser treinados para reconhecer características arquitetónicas e estruturais específicas dos edifícios a partir de imagens das suas fachadas e propor, de forma probabilística, uma ou várias classes de edifícios. Neste estudo, demonstrou-se como tais algoritmos podem ser combinados com dados do OpenStreetMap e imagens do Google Street View para desenvolver modelos de exposição para a análise de riscos múltiplos. Um conjunto de dados foi construído com aproximadamente 5000 imagens de edifícios da freguesia de Alvalade, no distrito de Lisboa (Portugal). Esse conjunto foi utilizado para testar diferentes algoritmos, resultando em níveis de desempenho e exatidão distintos. O melhor resultado foi obtido com o Xception, com uma exatidão de cerca de 86%, seguido do DenseNet201, do InceptionResNetV2 e do InceptionV3, todos com exatidões superiores a 83%. Estes resultados servirão de suporte a futuros desenvolvimentos na avaliação de modelos de exposição para análise de risco sísmico. A novidade deste trabalho consiste no número de características de edifícios presentes no conjunto de dados, no ...
Deep learning for building stock classification for seismic risk analysis
Nas últimas décadas, a maioria dos esforços para catalogar e caracterizar o ambiente construído para a avaliação de riscos múltiplos têm-se concentrado na exploração de dados censitários habitacionais, conjuntos de dados cadastrais e pesquisas locais. A primeira abordagem é atualizada apenas a cada 10 anos e não fornece informações sobre a localizações dos edifícios. O segundo tipo de dados está disponível apenas para algumas áreas urbanos, e a terceira abordagem requer levantamentos realizados por profissionais com formação em engenharia, o que é proibitivo em termos de custo para estudos de risco em larga escala. Portanto, é evidente que os métodos para caracterizar o ambiente construído para a análise de riscos em larga escala, estão atualmente ausentes, o que dificulta a avaliação do impacto de fenómenos naturais para fins de gestão de riscos. Alguns esforços recentes têm demonstrado como algoritmos de aprendizagem-máquina podem ser treinados para reconhecer características arquitetónicas e estruturais específicas dos edifícios a partir de imagens das suas fachadas e propor, de forma probabilística, uma ou várias classes de edifícios. Neste estudo, demonstrou-se como tais algoritmos podem ser combinados com dados do OpenStreetMap e imagens do Google Street View para desenvolver modelos de exposição para a análise de riscos múltiplos. Um conjunto de dados foi construído com aproximadamente 5000 imagens de edifícios da freguesia de Alvalade, no distrito de Lisboa (Portugal). Esse conjunto foi utilizado para testar diferentes algoritmos, resultando em níveis de desempenho e exatidão distintos. O melhor resultado foi obtido com o Xception, com uma exatidão de cerca de 86%, seguido do DenseNet201, do InceptionResNetV2 e do InceptionV3, todos com exatidões superiores a 83%. Estes resultados servirão de suporte a futuros desenvolvimentos na avaliação de modelos de exposição para análise de risco sísmico. A novidade deste trabalho consiste no número de características de edifícios presentes no conjunto de dados, no ...
Deep learning for building stock classification for seismic risk analysis
Lopes, Jorge Miguel Soares (author) / Gouveia, Feliz Ribeiro
2023-12-12
203547454
Theses
Electronic Resource
English
Visão computacional , Building exposure models , Aprendizagem profunda , Modelos de exposição de edifícios , Análise de risco sísmico , Deep learning , Computer vision , Redes neurais convolucionais , Convolutional neural networks , Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica , Eletrónica e Informática , Seismic risk analysis
DDC:
690
Analysis of seismic risk affecting the existing building stock
British Library Conference Proceedings | 1995
|British Library Online Contents | 2017
|