A platform for research: civil engineering, architecture and urbanism
Structural optimization of grid shells based on genetic algorithms
In the 21st century, as free form design gains popularity, free-form grid shells are becoming a universal structural solution, enabling merger of structure and facade into a single layer - a skin. The subject of the presented work is the optimization of grid structures over some predefined free form shape, with the goal of generating a stable and statically efficient structure. It is shown how combining design and FEM software in an iterative, Genetic Algorithms based, optimization process, stress and displacements in grid shell structures can be significantly reduced, whereby material can be saved and stability enhanced. Within this research, design and static analysis software are combined in order to perform a statical optimization of grid shells, generated over a given free form surface. A plug-in for Rhinoceros 3D (software based on NURBS geometry representation) is developed, that uses Genetic Algorithms as an optimization method and implements automated iterative calls to Oasys GSA (commercial FEM static analysis software) in order to generate a statically optimal grid shell. To make this possible, within this research some new types of automatic grid generation are developed. Voronoi diagrams were used together with the adapted Force-Density method to develop a new type of grid structure that we called Voronax. In the presented work it was shown that, using the same free form surface, and using the same number of joints and structural members, we can generate much more efficient grid shells, when compared to the standard (uniform) grid structures, simply by modifying the structural grid, i.e., rearranging the structural members of the grid shell. The work presented offers an explanation of the entire method and how it can be constructed. The results of the experiments are there to prove its efficiency and credibility. Once it is proved that the method works, its application can take various forms and be left to the creativity of the user and the requirements of the specific project.
Structural optimization of grid shells based on genetic algorithms
In the 21st century, as free form design gains popularity, free-form grid shells are becoming a universal structural solution, enabling merger of structure and facade into a single layer - a skin. The subject of the presented work is the optimization of grid structures over some predefined free form shape, with the goal of generating a stable and statically efficient structure. It is shown how combining design and FEM software in an iterative, Genetic Algorithms based, optimization process, stress and displacements in grid shell structures can be significantly reduced, whereby material can be saved and stability enhanced. Within this research, design and static analysis software are combined in order to perform a statical optimization of grid shells, generated over a given free form surface. A plug-in for Rhinoceros 3D (software based on NURBS geometry representation) is developed, that uses Genetic Algorithms as an optimization method and implements automated iterative calls to Oasys GSA (commercial FEM static analysis software) in order to generate a statically optimal grid shell. To make this possible, within this research some new types of automatic grid generation are developed. Voronoi diagrams were used together with the adapted Force-Density method to develop a new type of grid structure that we called Voronax. In the presented work it was shown that, using the same free form surface, and using the same number of joints and structural members, we can generate much more efficient grid shells, when compared to the standard (uniform) grid structures, simply by modifying the structural grid, i.e., rearranging the structural members of the grid shell. The work presented offers an explanation of the entire method and how it can be constructed. The results of the experiments are there to prove its efficiency and credibility. Once it is proved that the method works, its application can take various forms and be left to the creativity of the user and the requirements of the specific project.
Structural optimization of grid shells based on genetic algorithms
Freiform-Gitterschalen auf Basis evolutionärer Strategien
Dimcic, Milos (author) / Universität Stuttgart (host institution)
2011
Miscellaneous
Electronic Resource
English
DDC:
720
Optimization of concrete shells using genetic algorithms
Tema Archive | 2014
|Genetic Algorithms in Shape Optimization of Oval Axially Symmetrical Shells
British Library Conference Proceedings | 1998
|Structural Optimization of Grid Shells: Design Parameters and Combined Strategies
British Library Online Contents | 2018
|Membrane Concrete Grid Shells - UHPC Grid Shells
British Library Conference Proceedings | 2004
|