A platform for research: civil engineering, architecture and urbanism
On the computational modeling of micromechanical phenomena in solid materials
This work aims to contribute to the research on the constitutive modeling of solid materials, by investigating three particular micromechanical phenomena on three different length scales. The first microscopic phenomenon to be considered on the macroscopic scale is the process of failure in solid materials. Its characteristic non-smoothness in the displacement field results in the need for sophisticated numerical techniques in case one aims to capture those failure zones in a discrete way. One of the few finite element based methods successfully applied to such challenging problems is the so called strong discontinuity approach, for which failure can be described within the individual finite elements. To avoid stress locking, a higher order approximation of the resulting strong discontinuities is developed in the first part of this work for both, purely mechanical as well as electromechanical coupled materials. A sophisticated crack propagation concept relying on a combination of the widely used global tracking algorithm and the computer graphics based marching cubes algorithm is employed to obtain realistic crack paths in three dimensional simulations. Secondly, materials with an inherent network microstructures such as elastomers, hydrogels, non-woven fabrics or biological tissues are considered. The development of advanced homogenization principles accounting for such microstructures is the main focus in the second part of this work to better understand the mechanical and time-dependent effects displayed by such soft materials. Finally, the incorporation of wave functions into finite element based electronic structure calculations at the microscopic scale aims to account for the fact that the properties of condensed matter as for example electric conductivity, magnetism as well as the mechanical response upon external excitations are determined by the electronic structure of a material.
On the computational modeling of micromechanical phenomena in solid materials
This work aims to contribute to the research on the constitutive modeling of solid materials, by investigating three particular micromechanical phenomena on three different length scales. The first microscopic phenomenon to be considered on the macroscopic scale is the process of failure in solid materials. Its characteristic non-smoothness in the displacement field results in the need for sophisticated numerical techniques in case one aims to capture those failure zones in a discrete way. One of the few finite element based methods successfully applied to such challenging problems is the so called strong discontinuity approach, for which failure can be described within the individual finite elements. To avoid stress locking, a higher order approximation of the resulting strong discontinuities is developed in the first part of this work for both, purely mechanical as well as electromechanical coupled materials. A sophisticated crack propagation concept relying on a combination of the widely used global tracking algorithm and the computer graphics based marching cubes algorithm is employed to obtain realistic crack paths in three dimensional simulations. Secondly, materials with an inherent network microstructures such as elastomers, hydrogels, non-woven fabrics or biological tissues are considered. The development of advanced homogenization principles accounting for such microstructures is the main focus in the second part of this work to better understand the mechanical and time-dependent effects displayed by such soft materials. Finally, the incorporation of wave functions into finite element based electronic structure calculations at the microscopic scale aims to account for the fact that the properties of condensed matter as for example electric conductivity, magnetism as well as the mechanical response upon external excitations are determined by the electronic structure of a material.
On the computational modeling of micromechanical phenomena in solid materials
Numerische Modellierung mikromechanischer Phänomene in Festkörpern
Linder, Christian (author) / Universität Stuttgart (host institution)
2013
Miscellaneous
Electronic Resource
English
DDC:
624
Micromechanical modeling and simulation of piezoceramic materials
British Library Conference Proceedings | 2004
|Micromechanical Modeling of Stretch Broken Carbon Fiber Materials
British Library Online Contents | 2008
|Micromechanical Modeling for Inherent Anisotropy in Granular Materials
Online Contents | 2010
|Three-dimensional micromechanical modeling of voided polymeric materials
British Library Online Contents | 2002
|