A platform for research: civil engineering, architecture and urbanism
Massively parallel simulations of multiphase- and multicomponent flows using lattice Boltzmann methods
This thesis reflects the work mainly performed within the research project FIMOTUM focusing on the determination of transport properties and mechanisms in unsaturated media. The efficient simulation of single- and multiphase flows at the pore scale in highly resolved natural porous media is one of the major topics in this work. For this purpose a simulation kernel which is based on the lattice Boltzmann method (LBM) has been developed and extensively validated. The LBM presented utilizes the Multiple Relaxation Time (MRT) model and fluid/wall boundary conditions of second order accuracy. The model has also been extended to solve multiphase, advection/diffusion and thermal flow problems. Due to the application of an optimized collision model and corresponding boundary conditions, the covered parameter space and the stability of the method could be greatly enhanced. Hence, it was possible to perform simulations in complex geometries at a large scale (2E11+ DoF) which have been obtained with an unprecedented accuracy. A second target of this thesis was the design and implementation of a simulation kernel to perform massively parallel computations with high efficiency. In order to obtain accurate simulation results at reasonable computational effort, a novel grid generation procedure has been developed. The robust and flexible method is based on the decoupling of input geometry and the actual computational grid. It is therefore excellently suited for the grid generation based on natural porous media data sets obtained by CT- or X-ray methods. Aspects concerning the increasing difficulties in pre- and post-processing of large data sets are discussed. Furthermore, special issues in high performance computing environments are highlighted and a tool chain to visualize scientific data in photo-realistic representation is described.
Massively parallel simulations of multiphase- and multicomponent flows using lattice Boltzmann methods
This thesis reflects the work mainly performed within the research project FIMOTUM focusing on the determination of transport properties and mechanisms in unsaturated media. The efficient simulation of single- and multiphase flows at the pore scale in highly resolved natural porous media is one of the major topics in this work. For this purpose a simulation kernel which is based on the lattice Boltzmann method (LBM) has been developed and extensively validated. The LBM presented utilizes the Multiple Relaxation Time (MRT) model and fluid/wall boundary conditions of second order accuracy. The model has also been extended to solve multiphase, advection/diffusion and thermal flow problems. Due to the application of an optimized collision model and corresponding boundary conditions, the covered parameter space and the stability of the method could be greatly enhanced. Hence, it was possible to perform simulations in complex geometries at a large scale (2E11+ DoF) which have been obtained with an unprecedented accuracy. A second target of this thesis was the design and implementation of a simulation kernel to perform massively parallel computations with high efficiency. In order to obtain accurate simulation results at reasonable computational effort, a novel grid generation procedure has been developed. The robust and flexible method is based on the decoupling of input geometry and the actual computational grid. It is therefore excellently suited for the grid generation based on natural porous media data sets obtained by CT- or X-ray methods. Aspects concerning the increasing difficulties in pre- and post-processing of large data sets are discussed. Furthermore, special issues in high performance computing environments are highlighted and a tool chain to visualize scientific data in photo-realistic representation is described.
Massively parallel simulations of multiphase- and multicomponent flows using lattice Boltzmann methods
Massiv parallele Simulation von Mehrphasen- und Mehrkomponentenströmungen unter Anwendung des Lattice Boltzmann Verfahrens
Ahrenholz, Benjamin (author) / Universitätsbibliothek Braunschweig (host institution) / Krafczyk, Manfred (tutor)
2009
Miscellaneous
Electronic Resource
English
DDC:
624
UB Braunschweig | 2020
|