A platform for research: civil engineering, architecture and urbanism
Static and Dynamic Behaviour of Sand-Rubber Chips Mixtures
Reinforcing sand soils using tyre rubber chips is a novel technology that is under investigation to optimize its engineering application. Previous studies concentrated on static behaviour and very few on cyclic and dynamic behaviour of sand rubber mixtures leaving gaps that need to be addressed. This research focuses on evaluating the static, cyclic and dynamic behaviours of sand rubber mixtures. The basic properties of sands S2, S3, S4, rubber chips and sand rubber chips mixtures at 10/20/30% rubber chips content by dry mass were first evaluated in order to obtain the parameters essential for subsequent testing. Oedometer, direct shear with larger box 300x300 mm and static triaxial compression tests were performed to assess the static behaviour of the composite material. Further, dynamic cyclic triaxial tests were performed to evaluate the cyclic behaviour of saturated, dry and wet mixtures. All specimens were first isotropically consolidated at 100 kPa. For saturated material a static deviatoric stress of 45 kPa was imposed prior to cycling to simulate the field anisotropic consolidation condition. Cycling was applied stress-controlled with amplitude of 50kPa. Both undrained and drained tests were performed. Cyclic tests in dry or wet conditions were also performed under anisotropic consolidation condition with the application of different stress amplitudes. For all cyclic tests the loading frequency was 1 Hz. With regard to dynamic behaviour of the mixtures, the resonant column tests were conducted. Calibration was first performed yielding a frequency dependent drive head inertia. Wet mixture specimens were prepared at relative density of 50% and tested at various confining stresses. Note that all specimens tested in both triaxial and resonant column were 100 mm diameter. The results from the entire investigation are promising. In summary, rubber chips in the range of 4 to 14 mm mixed with sands were found to increase the shear resistance of the mixtures. They yield an increase of the cyclic resistance under saturated condition, to a decrease of stiffness and to an increase of damping ratio. Increased confining stress increased the shear modulus reduction and decreased damping ratio of the mixtures. Increased rubber content increased both shear modulus reduction and damping ratio. Several new design equations were proposed that can be used to compute the compression deformation, pore pressure ratio, maximum shear modulus and minimum damping ratio, as well as the modulus reduction with shear strain. Finally, chips content around 20% to 30% by dry mass can be used to reinforce sandy soils. The use of this novel composite material in civil engineering application could consume a large volume of scrap tyres and at the same time contribute to cleaning environment and saving natural resources.
Static and Dynamic Behaviour of Sand-Rubber Chips Mixtures
Reinforcing sand soils using tyre rubber chips is a novel technology that is under investigation to optimize its engineering application. Previous studies concentrated on static behaviour and very few on cyclic and dynamic behaviour of sand rubber mixtures leaving gaps that need to be addressed. This research focuses on evaluating the static, cyclic and dynamic behaviours of sand rubber mixtures. The basic properties of sands S2, S3, S4, rubber chips and sand rubber chips mixtures at 10/20/30% rubber chips content by dry mass were first evaluated in order to obtain the parameters essential for subsequent testing. Oedometer, direct shear with larger box 300x300 mm and static triaxial compression tests were performed to assess the static behaviour of the composite material. Further, dynamic cyclic triaxial tests were performed to evaluate the cyclic behaviour of saturated, dry and wet mixtures. All specimens were first isotropically consolidated at 100 kPa. For saturated material a static deviatoric stress of 45 kPa was imposed prior to cycling to simulate the field anisotropic consolidation condition. Cycling was applied stress-controlled with amplitude of 50kPa. Both undrained and drained tests were performed. Cyclic tests in dry or wet conditions were also performed under anisotropic consolidation condition with the application of different stress amplitudes. For all cyclic tests the loading frequency was 1 Hz. With regard to dynamic behaviour of the mixtures, the resonant column tests were conducted. Calibration was first performed yielding a frequency dependent drive head inertia. Wet mixture specimens were prepared at relative density of 50% and tested at various confining stresses. Note that all specimens tested in both triaxial and resonant column were 100 mm diameter. The results from the entire investigation are promising. In summary, rubber chips in the range of 4 to 14 mm mixed with sands were found to increase the shear resistance of the mixtures. They yield an increase of the cyclic resistance under saturated condition, to a decrease of stiffness and to an increase of damping ratio. Increased confining stress increased the shear modulus reduction and decreased damping ratio of the mixtures. Increased rubber content increased both shear modulus reduction and damping ratio. Several new design equations were proposed that can be used to compute the compression deformation, pore pressure ratio, maximum shear modulus and minimum damping ratio, as well as the modulus reduction with shear strain. Finally, chips content around 20% to 30% by dry mass can be used to reinforce sandy soils. The use of this novel composite material in civil engineering application could consume a large volume of scrap tyres and at the same time contribute to cleaning environment and saving natural resources.
Static and Dynamic Behaviour of Sand-Rubber Chips Mixtures
Banzibaganye, Gerard (author)
2022
22715 KB , XII, 148 pages
Veröffentlichungen des Fachgebietes Bodenmechanik und Grundbau der Technischen Universität Kaiserslautern; 19
Miscellaneous
Electronic Resource
English
Static and dynamic behaviour of sand-rubber chips mixtures
TIBKAT | 2022
|Sand-rubber mixtures (large rubber chips)
British Library Online Contents | 2008
|Sand-rubber mixtures (large rubber chips)
Online Contents | 2008
|