A platform for research: civil engineering, architecture and urbanism
Hydrological modelling in data sparse environment : inverse modelling of a historical flood event
We dealt with a rather frequent and difficult situation while modelling extreme floods, namely, model output uncertainty in data sparse regions. A historical extreme flood event was chosen to illustrate the challenges involved. Our aim was to understand what the causes might have been and specifically to show how input and model parameter uncertainties affect the output. For this purpose, a conceptual model was calibrated and validated with recent data rich time period. Resulting model parameters were used to model the historical event which subsequently resulted in a rather poor hydrograph. Due to the bad model performance, a spatial simulation technique was used to invert the model for precipitation. Constraints, such as taking the precipitation values at historical observation locations in to account, with correct spatial structures and following the observed regional distributions were used to generate realistic precipitation fields. Results showed that the inverted precipitation improved the performance significantly even when using many different model parameters. We conclude that while modelling in data sparse conditions both model input and parameter uncertainties have to be dealt with simultaneously to obtain meaningful results.
Hydrological modelling in data sparse environment : inverse modelling of a historical flood event
We dealt with a rather frequent and difficult situation while modelling extreme floods, namely, model output uncertainty in data sparse regions. A historical extreme flood event was chosen to illustrate the challenges involved. Our aim was to understand what the causes might have been and specifically to show how input and model parameter uncertainties affect the output. For this purpose, a conceptual model was calibrated and validated with recent data rich time period. Resulting model parameters were used to model the historical event which subsequently resulted in a rather poor hydrograph. Due to the bad model performance, a spatial simulation technique was used to invert the model for precipitation. Constraints, such as taking the precipitation values at historical observation locations in to account, with correct spatial structures and following the observed regional distributions were used to generate realistic precipitation fields. Results showed that the inverted precipitation improved the performance significantly even when using many different model parameters. We conclude that while modelling in data sparse conditions both model input and parameter uncertainties have to be dealt with simultaneously to obtain meaningful results.
Hydrological modelling in data sparse environment : inverse modelling of a historical flood event
Bárdossy, András (author) / Anwar, Faizan (author) / Seidel, Jochen (author) / Universität Stuttgart (host institution)
2020
Miscellaneous
Electronic Resource
English
DDC:
624
Hydrological Modelling in Data Sparse Environment: Inverse Modelling of a Historical Flood Event
DOAJ | 2020
|Reconstruction of historical flood discharges from meteorological and hydrological data
Online Contents | 2008
|Modelling the hydraulics of the Carlisle 2005 flood event
Online Contents | 2010
|ENVIRONMENT: Flood flush modelling debuts in South Africa
Online Contents | 1997